|
|
|
National Academy of Medical Sciences of Ukraine State Institution "The National Research Center for Radiation Medicine"
|
ISSN 2313-4607 (Online) ISSN 2304-8336 (Print) |
Problems of Radiation Medicine and Radiobiology |
|
|
|
|
|
|
K. M. Loganovsky1, P. A. Fedirko1, D. Marazziti2, K. V. Kuts1, K. Yu. Antypchuk1, I. V. Perchuk1,
T. F. Babenko1, T. K. Loganovska1, O. O. Kolosynska1, G. Yu. Kreinis1, S. V. Masiuk1, L. L. Zdorenko1,
N. A. Zdanevich1, N. A. Garkava3, R. Yu. Dorichevska1, Z. L. Vasilenko1, V. I. Kravchenko1,
N. V. Drosdova1, Yu. V. Yefimova1, A. V. Malinyak1
1 State Institution «National Research Center for Radiation Medicine of the National Academy of Medical
Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
2 Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma,
67, I 56100, Pisa, Italy
3 State Institution «Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine», 9 Vernadsky
Str., Dnipro, 49044, Ukraine
BRAIN AND EYE AS POTENTIAL TARGETS FOR IONIZING RADIATION IMPACT: PART II – RADIATION CEREBRO-OPHTALMIC EFFECTS IN CHILDREN, PERSONS EXPOSED
IN UTERO, ASTRONAUTS AND INTERVENTIONAL RADIOLOGISTS
Background. Ionizing radiation (IR) can affect the brain and the visual organ even at low doses, while provoking
cognitive, emotional, behavioral, and visual disorders. We proposed to consider the brain and the visual organ as
potential targets for the influence of IR with the definition of cerebro-ophthalmic relationships as the «eye-brain
axis».
Objective. The present work is a narrative review of current experimental, epidemiological and clinical data on radiation cerebro-ophthalmic effects in children, individuals exposed in utero, astronauts and interventional radiologists.
Materials and methods. The review was performed according to PRISMA guidelines by searching the abstract and
scientometric databases PubMed/MEDLINE, Scopus, Web of Science, Embase, PsycINFO, Google Scholar, published
from 1998 to 2021, as well as the results of manual search of peer-reviewed publications.
Results. Epidemiological data on the effects of low doses of IR on neurodevelopment are quite contradictory, while
data on clinical, neuropsychological and neurophysiological on cognitive and cerebral disorders, especially in the
left, dominant hemisphere of the brain, are nore consistent. Cataracts (congenital – after in utero irradiation) and
retinal angiopathy are more common in prenatally-exposed people and children. Astronauts, who carry out longterm space missions outside the protection of the Earth’s magnetosphere, will be exposed to galactic cosmic radiation (heavy ions, protons), which leads to cerebro-ophthalmic disorders, primarily cognitive and behavioral disorders
and cataracts. Interventional radiologists are a special risk group for cerebro-ophthalmic pathology – cognitive
deficits, mainly due to dysfunction of the dominant and more radiosensitive left hemisphere of the brain, and
cataracts, as well as early atherosclerosis and accelerated aging.
Conclusions. Results of current studies indicate the high radiosensitivity of the brain and eye in different contingents of irradiated persons. Further research is needed to clarify the nature of cerebro-ophthalmic disorders in different exposure scenarios, to determine the molecular biological mechanisms of these disorders, reliable dosimetric
support and taking into account the influence of non-radiation risk factors.
Key words: ionizing radiation, brain, eye, cerebro-ophthalmic effects, radiation emergencies, prenatal irradiation,
space flights, interventional radiology.
Problems of Radiation Medicine and Radiobiology. 2021;26:57-97. doi: 10.33145/2304-8336-2021-26-57-97
full text |
1. Loganovsky K. Do low doses of ionizing radiation affect the human brain? Data Science Journal. 2009;8:BR13-BR35. DOI: http://doi.org/10.2481/dsj.BR-04.
2. Tang F, Loganovsky K. Low dose or low dose rate ionizing radiation-induced health effect in the human. J Environ Radioact. 2018;192:32–47.
3. Marazziti D, Baroni S, Catena-Dell’Osso M, Schiavi E, Ceresoli D, Conversano C, et al. Cognitive, psychological and psychiatric effects of ionizing radiation exposure. Curr Med Chem. 2012;19(12):1864-1869.doi: 10.2174/092986712800099776.
4. Marazziti D, Piccinni A, Mucci F, Baroni S, Loganovsky K, Loganovskaja T. Ionizing radiation: brain effects and related neuropsychiatric manifestations. Probl. Radiac. Med. Radiobiol. 2016;21:64–90.
5. Hladik D, Tapio S. Effects of ionizing radiation on the mammalian brain. Mutat. Res. 2016;770(Pt B):219-230. doi: 10.1016/j.mrrev.2016.08.003.
6. Hamada N, Azizova TV, Little MP. An update on effects of ionizing radiation exposure on the eye. Br J Radiol. 2020;93(1115):20190829.doi: 10.1259/bjr.20190829.
7. Little MP, Azizova TV, Bazyka D, Bouffler SD, Cardis E, Chekin S, et al. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ. Health Perspect. 2012;120(11):1503–11. doi: 10.1289/ehp.1204982.
8. Little MP. A review of non-cancer effects, especially circulatory and ocular diseases. Radiat Environ Biophys. 2013;52(4):435–49. doi: 10.1007/s00411-013-0484-7.
9. Little MP, Lipshultz SP. Low dose radiation and circulatory diseases: a brief narrative review. Cardiooncology. 2015;1(1):4. doi: 10.1186/s40959-015-0007-6.
10. Little M. Radiation and circulatory disease. Mutat Res. 2016;770(Pt B):299-318. doi: 10.1016/j.mrrev.2016.07.008.
11. Little MP, Azizova TV, Hamada N. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int J Radiat Biol. 2021;97(6):782-803.doi: 10.1080/09553002.2021.1876955.
12. Pasqual E, Bosch de Basea M, Lopez-Vicente M, Thierry-Chef I, Cardis E. Neurodevelopmental effects of low dose ionizing radiation exposure: A systematic review of the epidemiological evidence. Environ Int. 2020;136:105371.doi: 10.1016/j.envint.2019.105371.
13. Verheyde J, Benotmane MA. Unraveling the fundamental molecular mechanisms of morphological and cognitive defects in the irradiated brain. Brain Res Rev. 2007;53(2):312-320. doi: 10.1016/j.brainresrev.2006.09.004.
14. Bazyka DA, Ilyenko IM, Loganovsky KN, Benotmane MA, Chumak SA.
TERF1 and TERF2 downregulate telomere length in cognitive deficit at the late period after low-dose exposure. Probl Radiac Med Radiobiol. 2014;19:170-185.
15. Bazyka DA, Loganovsky KM, Ilyenko IM, Chumak SA, Bomko MO. Gene expression, telomere and cognitive deficit analysis as a function of Chornobyl radiation dose and age: from in utero to adulthood. Probl Radiac Med Radiobiol. 2015;20:283-310.
16. Pasqual E, Boussin F, Bazyka D, Nordenskjold A, Yamada M, Ozasa K, et al. Cognitive effects of low dose of ionizing radiation – Lessons learned and research gaps from epidemiological and biological studies. Environ Int. 2021;147:106295. doi: 10.1016/j.envint.2020.106295.
17. Cekanaviciute E, Rosi S, Costes SV. Central Nervous System responses to simulated galactic cosmic rays. Int J Mol Sci. 2018;19(11):3669. doi: 10.3390/ijms19113669.PMID: 30463349
18. Mao XW, Boerma M, Rodriguez D, Campbell-Beachler M, Jones T, Stanbouly S, et al. Combined effects of low-dose proton radiation and simulated microgravity on the mouse retina and the hematopoietic system. Radiat. Res. 2019;192(3):241-250. doi: 10.1667/RR15219.1.
19. Chang PY, Bjornstad KA, Rosen CJ, Lin S, Blakely EA. Particle radiation alters expression of matrix metalloproteases resulting in ECM remodeling in human lens cells. Radiat Environ Biophys. 20017;46(2):187-194. doi: 10.1007/s00411-006-0087-7.
20. Cucinotta FA, Cacao E. Risks of cognitive detriments after low dose heavy ion and proton exposures. Int J Radiat Biol. 2019;95(7):985-998. doi: 10.1080/09553002.2019.1623427.
21. Cacao E, Cucinotta FA. Meta-analysis of cognitive performance by novel object recognition after proton and heavy ion exposures. Radiat Res. 2019;192(5):463-472. doi: 10.1667/RR15419.1.
22. Cucinotta FA, Cacao E. Predictions of cognitive detriments from galactic cosmic ray exposures to astronauts on exploration missions. Life Sci Space Res (Amst). 2020:129-135. doi: 10.1016/j.lssr.2019.10.004.
23. Kiffer F, Boerma M, Allen A. Behavioral effects of space radiation: A comprehensive review of animal studies. Life Sci Space Res (Amst). 2019:1-21. doi: 10.1016/j.lssr.2019.02.004.
24. Marazziti D, Arone A., Ivaldi T, Kuts K, Loganovsky K. Space missions: psychological and psychopathological issues. CNS Spectr. 2021 May 24;1-5. doi: 10.1017/S1092852921000535.
25. Reeves RR, Ang L, Bahadorani J, Naghi J, Dominguez A, Palakodeti V et al Invasive cardiologists are exposed to greater left sided cranial radiation: The BRAIN Study (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures). JACC Cardiovasc Interv. 2015;8(9):1197-1206. doi: 10.1016/j.jcin.2015.03.027.
26. Chumak V, Morgun A, Bakhanova E, Loganovsky K, Loganovska T, Marazziti D. Problems following hippocampal irradiation in interventional radiologists – doses and potential effects: a Monte Carlo simulation. Probl Radiac Med Radiobiol. 2015;20:241-256.
27. Andreassi MG, Piccaluga E, Gargani L, Sabatino L, Borghini A, Faita F, et al. Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation exposure: a genetic, telomere, and vascular ultrasound study in cardiac catheterization laboratory staff. JACC Cardiovasc Interv. 2015;8(4):616-627.doi: 10.1016/j.jcin.2014.12.233.
28. Marazziti D, Tomaiuolo F, Dell’Osso L, Demi V, Campana S, Piccaluga E, et al. Neuropsychological testing in interventional cardiology staff after long-term exposure to ionizing radiation. J Int Neuropsychol Soc. 2015;21(9):670-676. doi: 10.1017/S135561771500082X.
29. Vano E, Kleiman NJ, Duran A, Rehani MM, Echeverri D, Cabrera M. Radiation cataract risk in interventional cardiology personnel. Radiat Res. 2010;174(4):490–95. doi: 10.1667/RR2207.1.
30. Vano E, Kleiman NJ, Duran A, Romano-Miller M, Rehani MM. Radiation-associated lens opacities in catheterization personnel: results of a survey and direct assessments. J Vasc Intervent Radiol. 2013;24(2):197-204. doi: 10.1016/j.jvir.2012.10.016. Epub 2013 Jan 28.
31. Elmaraezy A, Ebraheem Morra M, Tarek Mohammed A, Al-Habaa A, Elgebaly A, Abdelmotaleb Ghazy A, et al. Risk of cataract among interventional cardiologists and catheterization lab staff: A systematic review and meta-analysis. Catheter Cardiovasc Interv. 2017;90(1):1-9. doi: 10.1002/ccd.27114.
32. Loganovsky KN, Marazziti D, Fedirko PA, Kuts KV, Antypchuk KY, Perchuk IV, et al. Radiation-induced cerebro-ophthalmic effects in humans. Life. 2020;10(4):41. doi: 10.3390/life10040041.
33. Loganovsky KN, Fedirko PA, Kuts KV, Marazziti D, Antypchuk KY, Perchuk IV, et al. Brain and eye as potential targets for ionizing radiation impact. Part ². The consequences of irradiation of the participants of the liquidation of the Chornobyl accident. Probl Radiac Med Radiobiol. 2020;25:90-129. doi: 10.33145/2304-8336-2020-25-90-129.
34. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097.
35. Developmental effects of irradiation on the brain of the embryo and fetus. A report of a Task Group of Committee 1 of the International Commission on Radiological Protection. ICRP Publication 49. Oxford, New York, Toronto, Sydney, Frankfurt Pergamon: Pergamon Press; 1986.
36. Biological Effects after Prenatal Irradiation (Embryo and Fetus). ICRP Publication 90. Ann ICRP. 2003;33(1-2).
37. Loganovsky K, Loganovskaya T. Responses to children’s mental health needs following the Ukrainian nuclear disaster at Chernobyl. Responses to Children’s Mental Health Needs after Major Disasters, an International Perspective. Columbia University Medical Center/New York State Psychiatric Institute, USA: Springer Nature Switzerland AG; 2019. p. 191-219.
38. Gaddini L, Balduzzi M, Campa A, Esposito G, Malchiodi-Albedi F, Patrono C, et al. Exposing primary rat retina cell cultures to ?-rays: An in vitro model for evaluating radiation responses. Exp Eye Res. 2018;166:21-28. doi: 10.1016/j.exer.2017.09.009.
39. Craenen K, Verslegers M, Buset J, Baatout S, Moons L, Benotmane M. A detailed characterization of congenital defects and mortality following moderate X-ray doses during neurulation. Birth Defects Res. 2017;110(6):467-482. doi: 10.1002/bdr2.1161.
40. Devi P, Baskar R, Hande M. Effect of exposure to low-dose gamma radiation during late organogenesis in the mouse fetus. Radiat Res. 1994;138(1):133-138.
41. Gao W, Lu H, Dong J, Zhang W, Zhou X, Jenkins L, et al. Postnatal growth, neurobehavioral and neurophysiologic changes of prenatal low-dose ?-radiation from tritiated water in mice. Neurotoxicol Teratol. 2002;24(2):247-254. doi: 10.1016/s0892-0362(02)00202-7.
42. Whelan R, Saccomano B, King R, Dorris K, Hemenway M, Hankinson T, et al. Radiation-induced Cataracts in Children With Brain Tumors Receiving Craniospinal Irradiation. Pediatr Hematol. Oncol. J. 2018;40(4):304-305. doi: 10.1097/MPH.0000000000001142.
43. Inkoom S, Raissaki M, Perisinakis K, Maris T, Damilakis J. Location of radiosensitive organs inside pediatric anthropomorphic phantoms: Data required for dosimetry. Phys Med. 2015;31(8):882-888. doi: 10.1016/j.ejmp.2015.06.005.
44. Day R, Gorin M, Eller A. Prevalence of lens changes in ukrainian children residing around Chernobyl. Health Phys. 1995;68(5):632-642. doi: 10.1097/00004032-199505000-00002.
45. Wang T, Chen J, Guo G, et al. Prevalence of lens opacity in population with chronic low-dose gamma-radiation exposure from radioactive apartments in Taiwan. In: Ocular radiation risk assessment in populations exposed to environmental radiation contamination. Dordrecht, Boston, London; 1999. p. 191-196.
46. Fedirko PA, Khilinskaya VYu. [The condition of the lens in children living in the area of radiation contamination. Analysis of the results of long-term observation]. Ophthalmol J. 1998;2:155-158. Ukrainian.
47. Fedirko P, Babenko T, Garkava N, Dorichevskaya R. [Radiation cataract after the Chernobyl disaster – a specific clinical picture]. Ophthalmology. Eastern Europe. 2021;11(1):19-26. http://doi.org/10.34883/PI. 2021.11.1.002. Russian.
48. Raudabaugh J, Smith A, Moore B, Ramirez-Giraldo J, Januzis N, Yoshizumi T. Evaluating lens dose reduction in pediatric neuroradiology examinations using automated Kilovoltage Selection Software. AJR Am. J. Roentgenol. 2018;211(3):635-640. doi: 10.2214/AJR.17.19089.
49. Majer M, Stolarczyk L, De Saint-Hubert M, Kabat D, Knezevic Z, Miljanic S, et al. Out-of-field dose measurements for 3d conformal and intensity modulated radiotherapy of a paediatric brain tumor. Radiat Protect Dosimetry. 2017;176(3):331-340. doi: 10.1093/rpd/ncx015.
50. Ploussi A, Stathopoulos I, Syrgiamiotis V, Makri T, Hatzigiorgi C, Platoni K, et al. Direct measurements of skin, eye lens and thyroid dose during pediatric brain ct examinations. Radiat Protect Dosimetry. 2017;179(3):199-205.
51. Lin M, Chen C, Lee Y, Li C, Gerweck L, Wang H, et al. Topogram-based tube current modulation of head computed tomography for optimizing image quality while protecting the eye lens with shielding. Acta Radiologica. 2018;60(1):61-67. doi: 10.1093/rpd/ncx251.
52. Mosher E, Butman J, Folio L, Biassou N, Lee C. Lens dose reduction by patient posture modification during neck CT. Am J Roentgenol. 2018;210(5):1111-1117. doi: 10.2214/AJR.17.18261.
53. Matsutomo N, Fukunaga M, Onishi H, Yamamoto T. Corneal dose reduction using a bismuth-coated latex shield over the eyes during brain SPECT/CT. J Nucl Med Technol. 2017;45(3):214-218. doi: 10.2967/jnmt.117.192849.
54. Nembhard W, McElfish P, Ayers B, Collins R, Shan X, Rabie N, et al. Nuclear radiation and prevalence of structural birth defects among infants born to women from the Marshall Islands. Birth Defects Res. 2019;111(16):1192-1204. doi: 10.1002/bdr2.1551.
55. Ballesteros-Zebadua P, Chavarria A, Angel Celis M, Paz C, Franco-Perez J. Radiation-Induced Neuroinflammation and Radiation Somnolence Syndrome. CNS & Neurological Disorders Drug Targets. 2012;11(7):937-949. doi: 10.2174/1871527311201070937.
56. Ron E, Modan B, Floro S, Harkedar I, Gurewitz R. Mental function following scalp irradiation during childhood. Am J Epidemiol. 1982;116(1):149-160. doi: 10.1093/oxfordjournals.aje.a113389.
57. Hall P, Adami H, Trichopoulos D, Pedersen N, Lagiou P, Ekbom A, et al. Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study. BMJ. 2004;328(7430):19. doi: 10.1136/bmj.328.7430.19.
58. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118. Ann ICRP. 2012;41(1-2):1-322. doi: 10.1016/j.icrp.2012.02.001.
59. Burtovaya EYu, Kantina TE, Belova MV, Akleyev AV [Cognitive impairments in persons exposed to radiation during the period of prenatal development]. Zh Nevrol Psikhiatr Im S S Korsakova. 2015;115(4):20-23. doi: 10.17116/jnevro20151154120-23. Russian.
60. Litcher L, Bromet E, Carlson G, Squires N, Goldgaber D, Panina N, et al. School and neuropsychological performance of evacuated children in Kyiv 11 years after the Chornobyl disaster. J Child Psychol Psychiatry. 2000;41(3):291-219.
61. Bromet E, Goldgaber D, Carlson G, Panina N, Golovakha E, Gluzman S, et al. Children’s well-being 11 years after the Chornobyl catastrophe. Arch Gen Psychiatry. 2000;57(6):563-571. doi: 10.1001/archpsyc.57.6.563.
62. Taormina D, Rozenblatt S, Guey L, Gluzman S, Carlson G, Havenaar J, et al. The Chornobyl accident and cognitive functioning: a follow-up study of infant evacuees at age 19 years. Psychol Med. 2008;38(4):489-497. doi: 10.1017/S0033291707002462.
63. Kolominsky Y, Igumnov S, Drozdovitch V. The psychological development of children from Belarus exposed in the prenatal period to radiation from the Chernobyl Atomic Power Plant. J Child Psychol Psychiatry. 1999;40(2):299-305.
64. Igumnov S, Drozdovitch V. The intellectual development, mental and behavioural disorders in children from Belarus exposed in utero following the Chernobyl accident. Eur Psychiatry. 2000;15(4):244-253. doi: 10.1016/s0924-9338(00)00237-6.
65. Igumnov S, Drozdovitch V. [Antenatal exposure following the Chernobyl accident: neuropsychiatric aspects]. Int J Radiat Med. 2004;6(1-4 Special Issue):108-115. Russian.
66. Nyagu A, Loganovsky K, Loganovskaja T, Repin V, Nechaev S. Intelligence and brain damage in children acutely irradiated in utero as a result of the Chernobyl accident. In: Imanaka T, editor. KURRI-KR-79 Recent Research Activities about the Chernobyl NPP Accident in Belarus, Ukraine and Russia. Kyoto: Research Reactor Institute, Kyoto University; 2002. p. 202-230.
67. Nyagu AI, Loganovsky KN, Pott-Born R, Repin VS, Nechaev SY, Antipchuk EY, et al. [Effects of prenatal brain irradiation as a result of the Chernobyl accident]. Int J Radiat Med. 2004;6(1-4 Special Issue):91-107. Russian.
68. Loganovska TK, Nechaev SY. [Psychophysiological effects in prenatally irradiated children and adolescents after the Chornobyl accident]. Medical Universe. 2004;4(1):130–7. Ukrainian.
69. Loganovskaja TK. [Mental disorders in children exposed to prenatal irradiation as a result of the Chornobyl accident] [dissertation]. Kyiv: Research Center of Radiation Medicine of the National Academy of Medical Sciences of Ukraine; 2005. 253 p. Ukrainian.
70. Loganovsky K, Loganovskaja T, Nechayev S, Antipchuk Y, Bomko M. Disrupted Development of the dominant hemisphere following prenatal irradiation. J Neuropsychiatry Clin Neurosci. 2008;20(3):274-291. doi: 10.1176/jnp.2008.20.3.274.
71. Loganovsky K, Loganovskaja T, Kuts K. Psychophysiology research in the detection of ionizing radiation effects. In: Chiappelli F, editor. Advances in Psychobiology. New York, USA: Nova Science Publisher; 2018. p. 63-152.
72. Loganovskaja T, Loganovsky K. Visual vertex potential and psychopathology of children irradiated in utero. Int J Psychophysiol. 2000;35(1):6.
73. Heiervang K, Mednick S, Sundet K, Rund B. Effect of low dose ionizing radiation exposure in utero on cognitive function in adolescence. Scand J Psychol. 2010;51(3):210-215. doi: 10.1111/j.1467-9450.2010.00814.x.
74. Heiervang K, Mednick S, Sundet K, Rund B. The Chernobyl Accident and Cognitive Functioning: A study of Norwegian adolescents exposed in utero. Dev Neuropsychol. 2010;35(6):643-655. doi: 10.1080/87565641.2010.508550.
75. Lie R, Moster D, Strand P, Wilcox A. Prenatal exposure to Chernobyl fallout in Norway: neurological and developmental outcomes in a 25-year follow-up. Eur J Epidemiol. 2017;32(12):1065-1073. doi: 10.1007/s10654-017-0350-z.
76. Hatch M, Little M, Brenner A, Cahoon E, Tereshchenko V, Chaikovska L, et al. Neonatal outcomes following exposure in utero to fallout from Chernobyl. Eur J Epidemiol. 2017;32(12):1075-1088. doi: 10.1007/s10654-017-0299-y.
77. Imamura Y, Nakane Y, Ohta Y, Kondo H. Lifetime prevalence of schizophrenia among individuals prenatally exposed to atomic bomb radiation in Nagasaki City. Acta Psychiatr Scand. 2007;100(5):344-349. doi: 10.1111/j.1600-0447.1999.tb10877.x.
78. Korr H, Thorsten R, Benders J. Neuron loss during early adulthood following prenatal low-dose X-irradiation in the mouse brain. Int J Radiat Biol. 2001;77(5):567-580. doi: 10.1080/09553000010028467.
79. Schindler M, Wang L, Selemon L, Goldman-Rakic P, Rakic P, Csernansky J. Abnormalities of thalamic volume and shape detected in fetally irradiated rhesus monkeys with high dimensional brain mapping. Biol Psychiatry. 2002;51(10):827-837. doi: 10.1016/s0006-3223(01)01341-5.
80. Gelowitz D, Rakic P, Goldman-Rakic P, Selemon L. Craniofacial dysmorphogenesis in fetally irradiated nonhuman primates: implications for the neurodevelopmental hypothesis of schizophrenia. Biol Psychiatry. 2002;52(7):716-720. doi: 10.1016/s0006-3223(02)01380-x.
81. Schmitz C, Born M, Dolezel P, Rutten B, de Saint-Georges L, Hof P, et al. Prenatal protracted irradiation at very low dose rate induces severe neuronal loss in rat hippocampus and cerebellum. Neuroscience. 2005;130(4):935-948. doi: 10.1016/j.neuroscience.2004.08.034.
82. Selemon L, Wang L, Nebel M, Csernansky J, Goldman-Rakic P, Rakic P. Direct and indirect effects of fetal irradiation on cortical gray and white matter volume in the macaque. Biol Psychiatry. 2005;57(1):83-90. doi: 10.1016/j.biopsych.2004.10.014.
83. Selemon L, Begovic? A, Rakic P. Selective reduction of neuron number and volume of the mediodorsal nucleus of the thalamus in macaques following irradiation at early gestational ages. J Comp Neurol. 2009;515(4):454-464. doi: 10.1002/cne.22078.
84. Friedman H, Selemon L. Fetal irradiation interferes with adult cognition in the nonhuman primate. Biol Psychiatry. 2010;68(1):108-111. doi: 10.1016/j.biopsych.2010.02.021.
85. Selemon L, Friedman H. Motor stereotypies and cognitive perseveration in non-human primates exposed to early gestational irradiation. Neuroscience. 2013;248:213-224. doi: 10.1016/j.neuroscience.2013.06.006.
86. Hamid H, Gross R, Harlap S. Prenatal X-ray exposure may increase risk of schizophrenia: results from the Jerusalem Perinatal Cohort Schizophrenia Study. [Int. J. Rad. Biol. 2009 TRAB-2009-IJRB-0126; unpublished data].
87. Gross R, Hamid H, Harlap S, Malaspina D. Prenatal x-ray exposure may increase risk of schizophrenia: Results from the Jerusalem perinatal cohort schizophrenia study. Int J Ment Health. 2018;47(3):236-240.
88. Babenko TF. [Clinical and epidemiological characteristics of the visual organ in persons prenatally irradiated as a result of the Chornobyl catastrophe] [dissertation abstract]. Kyiv: State Institution “National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine”; 2013. 23 p. Ukrainian.
89. Fedirko P, Babenko T, Dorichevska R. [Irradiated in utero as a result of the Chornobyl catastrophe: prevalence and relative risks of eye diseases]. Problems of Ecological and Medical Genetics and Clinical Immunology. 2011;108(4):407-412. Ukrainian.
90. Fedirko PA, Babenko TF. [The risk of developing eye diseases in a cohort of persons irradiated in utero]. Problems of Ecological and Medical Genetics and Clinical Immunology. 2013;115(1):22–29. Ukrainian.
91. Babenko T, Fedirko P. [Clinical features of eye diseases in exposed in utero as a result of the Chernobyl catastrophe]. Ophthalmology. Eastern Europe. 2013;2:67-71. Russian.
92. Pasechnikova NV, Fedirko PA, Babenko TF. [A case of radiation cataract detected 29 years after radiation exposure]. Ophthalmol Journal. 2020;6:61-63. doi: 10.31288/oftalmolzh202066163. Russian.
93. Fedirko PA, Babenko TF, Kolosynska OO, Dorichevska RE, Garkava NA, Sushko VO. Clinical types of cataracts in a long-term period after acute radiation sickness. Probl Radiac Med Radiobiol. 2019;24:493–502. doi: 10.33145/2304-8336-2019-24-493-502.
94. Sergienko NM, Fedirko PA. Accommodative function of eyes in persons exposed to ionizing radiation. Ophthal Res. 2002;34(4):192–4. doi: 10.1159/000063879.
95. Vasylenko VV, Tsigankov MY, Nechaev SY, Pikta VO, Zadorozhna GM, Bilonyk AB. Peculiarities of internal radiation doses due to 137Cs and 90Sr intake in population from Zhytomyr oblast in a late period after the Chornobyl NPP accident. Probl Radiac Med Radiobiol. 2013;(18):59-69.PMID: 25191711
96. Vasylenko VV, Nechaev SY, Tsigankov MY, Pikta VO, Zadorozhna GM, Kuriata MS, Lytvynetz LO, Mischenko LP, Babenko TF. Results of comprehensive radiological-hygienic monitoring in some settlements of radiologically contaminated areas in Rivne region in 2017. Probl Radiac Med Radiobiol. 2018;23:139-152. doi: 10.33145/2304-8336-2018-23-139-152.
97. Prylypko VA, Morozova MM, Petrychenko OO, Ozerova YY, Kotsubinskij OV. Morbidity rates in the NPP surveillance zone and radiologically contaminated areas. Probl Radiac Med Radiobiol. 2018;23:188-199. doi: 10.33145/2304-8336-2018-23-188-199.
98. Gunko NV Korotkova NV Variability of population gender and age composition in areas with the most intensive radiological contamination in Ukraine. Probl Radiac Med Radiobiol. 2018;23:153-163. doi: 10.33145/2304-8336-2018-23-153-163.
99. Gunko NV, Korotkova NV, Zasoba YY. Analysis of population size and composition in areas with the most intensive radiological contamination in Ukraine at different times. Probl Radiac Med Radiobiol. 2019;24:109–20. doi: 10.33145/2304-8336-2019-24-109-120.
100. Serdyuchenko VI, Nostopireva OI. [Remote observations of the condition of the visual organ of schoolchildren who permanently live in a radioactively contaminated area]. Ophthalmol Journal. 2006;(3(²²)):152-155. Ukrainian.
101. Serdyuchenko VI, Nostopyreva EI. [Refractogenesis in schoolchildren living in a radiation-contaminated area]. Odesa: Astroprint; 2015, 104 p. Russian.
102. Fedirko PA, Garkava NA. [Patterns of development of retinal vascular pathology in the remote period after radiation exposure]. Ophthalmol Journal. 2016;(6):24-28. doi: 10.31288/oftalmolzh201662428. Ukrainian.
103. Fedirko PA, Babenko TF, Dorichevska RY, Garkava NA. Retinal vascular pathology risk development in the irradiated at different ages as a result of Chernobyl NPP accident. Probl Radiac Med Radiobiol. 2015;20:467-473.
104. Fedirko PA, Garkava NA Microcirculation violations of the conjunctiva in clean up workers of the Chornobyl NPP accident. Probl Radiac Med Radiobiol. 2016;21:345-3451.
105. Garkava NA, Fedirko PA, Babenko TF, Dorichevska RE. Radiation induced violations of blood circulation in the ciliary body and changes of the anterior chamber angle in the pathogenesis of glaucoma in clean up workers of the Chornobyl NPP accident and residents of contaminated areas. Probl Radiac Med Radiobiol. 2017;22:332-338.
106. Babenko TF, Fedirko PA, Dorichevska RY, Denysenko NV, Samoteikina LA, Tyshchenko OP The risk of macular degeneration development in persons antenatally irradiated as a result of Chornobyl NPP accident. Probl Radiac Med Radiobiol. 2016;21:172-177.
107. Fedirko P, Babenko T, Kolosynska O, Dorichevska R, Garkava N, Grek L, Vasylenko V, Masiuk S. Morphometric parameters of retinal macular zone in reconvalescents of Acute Radiation Sickness (in remote period). Probl Radiac Med Radiobiol. 2018;23:481-489. doi: 10.33145/2304-8336-2018-23-481-489.
108. Fedirko PA, Babenko TF, Dorichevskaya RE. [The effectiveness of long-term use of the complex with lutein, zeaxanthin and resveratrol at the initial stage of AMD in persons exposed to low-intensity radiation exposure (preliminary results)]. Ophthalmology. Eastern Europe. 2019;9(4):526-532. Russian.
109. Fedirko P, Babenko T. Eye pathology in the exposed prenatally as a result of the Chornobyl Disaster. In: Bazyka D, et al., editors. Health effects of the Chornobyl accident – thirty years aftermath. Kyiv: DIA; 2016. p. 421-423.
110. Korol A, Kustryn T, Zadorozhnyy O, Pasyechnikova N, Kozak I. Top of form bottom of form comparison of efficacy of intravitreal ranibizumab and aflibercept in eyes with myopic choroidal neovascularization: 24-month follow-up. J Ocul Pharmacol Ther. 2020;36(2):122-125. doi: 10.1089/jop.2019.0080.
111. Pasyechnikova NV, Naumenko VO, Korol AR, Zadorozhnyy OS, Kustryn TB, Henrich PB. Intravitreal Ranibizumab for the treatment of choroidal neovascularizations associated with pathologic myopia: a prospective study. Ophthalmologica. 2015;233(1):2-7 doi: 10.1159/000369397.
112. Kleiman N, Stewart F, Hall E. Modifiers of radiation effects in the eye. Life Sci Space Res. 2017;15:43-54. doi: 10.1016/j.lssr.2017.07.005.
113. Turner N, Braby L, Ford J, Lupton J. Opportunities for nutritional amelioration of radiation-induced cellular damage. Nutrition. 2002;18(10):904-912. doi: 10.1016/s0899-9007(02)00945-0.
114. Van Ombergen A, Laureys S, Sunaert S, Tomilovskaya E, Parizel P, Wuyts F. Spaceflight-induced neuroplasticity in humans as measured by MRI: what do we know so far? NPJ Microgravity. 2017;3:2. doi: 10.1038/s41526-016-0010-8.
115. Acharya M, Baulch J, Klein P, Baddour A, Apodaca L, Kramar E, et al. New concerns for neurocognitive function during deep space exposures to chronic, low dose-rate, neutron radiation. Eneuro. 2019;6(4):ENEURO.0094-19.2019. doi: 10.1523/ENEURO.0094-19.2019.
116. Mao X, Boerma M, Rodriguez D, Campbell-Beachler M, Jones T, Stanbouly S, et al. Acute effect of low-dose space radiation on mouse retina and retinal endothelial cells. Radiat Res. 2018;190(1):45-52. doi: 10.1667/RR14977.1.
117. Parihar V, Maroso M, Syage A, Allen B, Angulo M, Soltesz I, et al. Persistent nature of alterations in cognition and neuronal circuit excitability after exposure to simulated cosmic radiation in mice. Exp Neurol. 2018;305:44-55. doi: 10.1016/j.expneurol.2018.03.009.
118. Carr H, Alexander T, Groves T, Kiffer F, Wang J, Price E, et al. Early effects of 16O radiation on neuronal morphology and cognition in a murine model. Life Sci Space Res. 2018;17:63-73. doi: 10.1016/j.lssr.2018.03.001.
119. Cucinotta F, Alp M, Sulzman F, Wang M. Space radiation risks to the central nervous system. Life Sci Space Res. 2014;2:54-69.
120. Hellweg C, Baumstark-Khan C. Getting ready for the manned mission to Mars: the astronauts’ risk from space radiation. Naturwissenschaften. 2007;94(7):517-526. doi: 10.1007/s00114-006-0204-0.
121. Norbury J, Slaba T. Space radiation accelerator experiments – The role of neutrons and light ions. Life Sci Space Res. 2014;3:90-94. doi: 10.1016/j.lssr.2014.09.006.
122. Curtis H. The biological effects of heavy cosmic ray particles. Life Sci Space Res. 1963;1:39–47.
123. Gauger G, Tobias C, Yang T, Whitney M. The effect of space radiation of the nervous system. Advances in Space Research. 1986;6(11):243-249.
124. Salari V, Scholkmann F, Vimal R, Csaszar N, Aslani M, Bokkon I. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Progress in Retinal and Eye Research. 2017;60:101-119. doi: 10.1016/j.preteyeres.2017.07.001.
125. Eds. Purves D, Augustine G, David Fitzpatrick D, Hall W, LaMantia A, Mooney R, et al. Neuroscience. 6th ed. Sunderland, Massachusetts: Oxford University Press; 2018.
126. Fuglesang C, Narici L, Picozza P, Sannita W. Phosphenes in low earth orbit: survey responses from 59 astronauts. Aviat Space Environ Med. 2006;77(4):449-452.
127. Loganovsky KM, Kuts KV.Cognitive evoked potentials P300 after radiation exposure. Probl Radiac Med Radiobiol. 2016;21:264-290.
128. Loganovsky K, Kuts K.Evoked bioelectrical brain activity following exposure to ionizing radiation. Probl Radiac Med Radiobiol. 2017;22:38–68.
129. Bokkon I, Vimal R, Wang C, Dai J, Salari V, Grass F, et al. Visible light induced ocular delayed bioluminescence as a possible origin of negative afterimage. J Photochem Photobiol B: Biol. 2011;103(2):192-199. doi: 10.1016/j.jphotobiol.2011.03.011.
130. Narici L. Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight. New J. Phys. 2008;10(7):075010.
131. Khan D, Lacasse M, Khan R, Murphy K. Radiation cataractogenesis: the progression of our understanding and its clinical consequences. J Vasc Intervent Radiol. 2017;28(3):412-419. doi: 10.1016/j.jvir.2016.11.043.
132. Bor D, Cekirge S, Turkay T, Turan O, Gulay M, Onal E, et al. Patient and staff doses in interventional neuroradiology. Radiat Protect Dosimetry. 2005;117(1-3):62-68. doi: 10.1093/rpd/nci725.
133. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2-4):1-332. doi: 10.1016/j.icrp.2007.
134. International Atomic Energy Agency. IAEA annual report 2012. Human health. 2012. Available from: https://www.iaea.org/ru/publications/reports/annual-report-2012.
135. National Council on Radiation Protection and Measurements. NCRP annual report 2011. Available from: https://ncrponline.org/wp-content/themes/ncrp/PDFs/NCRP_2011_Annual_Rpt.pdf.
136. United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 report – Vol. I: Sources [Internet]. Unscear.org. 2000 [cited 6 April 2020]. Available from: http://www.unscear.org/unscear/en/publications/2000_1.html
137. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and effects of ionizing radiation. New York: United Nations; 2008.
138. Picano E. Sustainability of medical imaging. BMJ. 2004;328(7439):578-580. doi: 10.1136/bmj.328.7439.578.
139. El Basha D, Furuta T, Iyer S, Bolch W. A scalable and deformable stylized model of the adult human eye for radiation dose assessment. Physics in Medicine & Biology. 2018;63(10):105017. doi: 10.1088/1361-6560/aab955.
140. Pugliese M, Amatiello A, Correra M, Stoia V, Cerciello V, Roca V, et al. Evaluation of the current status of the eye lens radiation exposure in an interventional radiology department. Med Lav. 2018;109(6):471-417. doi: 10.23749/mdl.v110i6.7286.
141. Medici S, Pitzschke A, Cherbuin N, Boldini M, Sans-Merce M, Damet J. Eye lens radiation exposure of the medical staff performing interventional urology procedures with an over-couch X-ray tube. Phys Med. 2017;43:140-147. doi: 10.1016/j.ejmp.2017.11.002.
142. Thome C, Chambers D, Hooker A, Thompson J, Boreham D. Deterministic effects to the lens of the eye following ionizing radiation exposure: is there evidence to support a reduction in threshold dose? Health Phys. 2018;114(3):328-343. doi: 10.1097/HP.0000000000000810.
143. Dauer L, Ainsbury E, Dynlacht J, Hoel D, Klein B, Mayer D, et al. Guidance on radiation dose limits for the lens of the eye: overview of the recommendations in NCRP Commentary No. 26. Int J Radiat Biol. 2017;93(10):1015-1023. doi: 10.1080/09553002.2017.1304669.
144. Jacob S, Donadille L, Maccia C, Bar O, Boveda S, Laurier D, et al. Eye lens radiation exposure to interventional cardiologists: a retrospective assessment of cumulativedoses. Radiat Protect Dosimetry. 2013;153(3):282-293. doi: 10.1093/rpd/ncs116.
145. Vano E, Miller D, Dauer L. Implications in medical imaging of the new ICRP thresholds for tissue reactions. Ann ICRP. 2015;44(1_suppl):118-128. doi: 10.1177/0146645314562322.
146. Roguin A, Goldstein J, Bar O, Goldstein J. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111(9):1368-1372. doi: 10.1016/j.amjcard.2012.12.060.
147. Flint-Richter P, Sadetzki S. Genetic predisposition for the development of radiation-associated meningioma: an epidemiological study. Lancet Oncol. 2007;8(5):403-410. doi: 10.1016/S1470-2045(07)70107-9.
148. Thrapsanioti Z, Askounis P, Datseris I, Diamanti R, Papathanasiou M, Carinou E. Eye lens radiation exposure in greek interventional cardiology article. Radiat Protect Dosimetry. 2017;175(3):344-356. doi: 10.1093/rpd/ncw356.
149. Mrena S, Kivela T, Kurttio P, Auvinen A. Lens opacities among physicians occupationally exposed to ionizing radiation – a pilot study in Finland. Scand J Work, Environ Health. 2011;37(3):237-243. doi: 10.5271/sjweh.3152.
150. Kelly R, McMahon A, Hegarty D. Ionizing radiation dose exposure to the ocularregion of pain physicians during C-arm guided pain interventions. Pain Physician. 2018;21(5):E523-E532.
151. Fetterly K, Schueler B, Grams M, Sturchio G, Bell M, Gulati R. Head and neck radiation dose and radiation safety for interventional physicians. JACC: Cardiovascular Interventions. 2017;10(5):520-528. doi: 10.1016/j.jcin.2016.11.026.
152. Sans Merce M, Korchi A, Kobzeva L, Damet J, Erceg G, Marcos Gonzalez A, et al. The value of protective head cap and glasses in neurointerventional radiology. J Neurointerv Surg. 2016;8(7):736-740. doi: 10.1136/neurintsurg-2015-011703.
153. Picano E, Vano E, Domenici L, Bottai M, Thierry-Chef I. Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure. BMC Cancer. 2012;12:157. doi: 10.1186/1471-2407-12-157.
154. Karatasakis A, Brilakis H, Danek B, Karacsonyi J, Martinez-Parachini J, Nguyen-Trong P, et al. Radiation-associated lens changes in the cardiac catheterization laboratory: Results from the IC-CATARACT (CATaracts Attributed to RAdiation in the CaTh lab) study. Catheter Cardiovasc Interv. 2018;91(4):647-654. doi: 10.1002/ccd.27173.
155. de Lima A, Hunt J, Da Silva F. Dose estimation to eye lens of industrial gamma radiography workers using the Monte Carlo method. J Radiol Protect. 2017;37(4):852-863. doi: 10.1088/1361-6498/aa7f06.
156. Yoder R, Dauer L, Balter S, Boice J, Grogan H, Mumma M, et al. Dosimetry for the study of medical radiation workers with a focus on the mean absorbed dose to the lung, brain and other organs. Int J Radiat Biol. 2018 Nov 19:1-36. doi: 10.1080/09553002.2018.1549756.
157. Kato M, Chida K, Ishida T, Toyoshima H, Yoshida Y, Yoshioka S, et al. Occupational radiation exposure of the eye in neurovascular interventional physician. Radiat Protect Dosimetry. 2019;185(2):151-156. doi: 10.1093/rpd/ncy285.
158. Sookpeng S, Butdee C. Signal-to-noise ratio and dose to the lens of the eye for computed tomography examination of the brain using an automatic tube current modulation system. Emerg Radiol. 2017;24(3):233-239. doi: 10.1007/s10140-016-1470-6.
159. Ciarmatori A, Nocetti L, Mistretta G, Zambelli G, Costi T. Reducing absorbed dose to eye lenses in head CT examinations: the effect of bismuth shielding. Australas Phys Eng Sci Med. 2016;39(2):583-589. doi: 10.1007/s13246-016-0445-y.
160. Akhilesh P, Kulkarni A, Jamhale S, Sharma S, Kumar R, Datta D. Estimation of eye lens dose during brain scans using Gafchromic Xr-QA2 film in various multidetector CT scanners. Radiat Protect Dosimetry. 2017;174(2):236-241. doi: 10.1093/rpd/ncw132.
161. Guberina N, Suntharalingam S, Na?enstein K, Forsting M, Theysohn J, Wetter A, et al. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans. Neuroradiology. 2016;58(10):955-959. doi: 10.1007/s00234-016-1722-x.
162. Safari M, Wong J, Jong W, Thorpe N, Cutajar D, Rosenfeld A, et al. Influence of exposure and geometric parameters on absorbed doses associated with common neuro-interventional procedures. Phys Med. 2017;35:66–72. doi: 10.1016/j.ejmp.2017.02.002.
163. Alkhorayef M, Babikir E, Alrushoud A, Al-Mohammed H, Sulieman A. Patient radiation biological risk in computed tomography angiography procedure. Saudi J Biol Sci. 2017;24(2):235-240. doi: 10.1016/j.sjbs.2016.01.011.
164. Nikupaavo U, Kaasalainen T, Reijonen V, Ahonen S, Kortesniemi M. Lens Dose in routine head CT: comparison of different optimization methods with anthropomorphic phantoms. Am J Roentgenol. 2015;204(1):117-123. doi: 10.2214/AJR.14.12763.
165. Brix G, Lechel U, Nekolla E, Griebel J, Becker C. Radiation protection issues in dynamic contrast-enhanced (perfusion) computed tomography. Eur J Radiol. 2015;84(12):2347-2358. doi: 10.1016/j.ejrad.2014.11.011.
166. Rehani M. Eye dose assessment and management: overview. Radiat Protect Dosimetry. 2015;165(1-4):276-278. doi: 10.1093/rpd/ncv048.
167. Morina D, Grellier J, Carnicer A, Pernot E, Ryckx N, Cardis E. InterCardioRisk: a novel online tool for estimating doses of ionising radiation to occupationally-exposed medical staff and their associated health risks. J Radiol Protect. 2016;36(3):561-578. doi: 10.1088/0952-4746/36/3/561.
168. Honorio da Silva E, Vanhavere F, Struelens L, Covens P, Buls N. Effect of protective devices on the radiation dose received by the brains of interventional cardiologists. EuroIntervention. 2018;13(15):e1778-e1784. doi: 10.4244/EIJ-D-17-00759.
169. Bartal G, Vano E, Paulo G, Miller D. Management of patient and staff radiation dose in interventional radiology: current concepts. Cardiovasc Intervent Radiol. 2014;37(2):289-298. doi: 10.1007/s00270-013-0685-0.
|
|
| |
|
© 2013 Problems of Radiation Medicine |
| | |
|
|