|
|
|
National Academy of Medical Sciences of Ukraine State Institution "The National Research Center for Radiation Medicine"
|
ISSN 2313-4607 (Online) ISSN 2304-8336 (Print) |
Problems of Radiation Medicine and Radiobiology |
|
|
|
|
|
|
O. V. Kucher, S. V. Vydyborets
Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., Kyiv, 04112, Ukraine
LONG-TERM GENETIC AND EPIGENETIC DISORDERS IN PERSONS EXPOSED TO IONIZING RADIATION AND THEIR DESCENDANTS (review)
The review is devoted to long-term genetic and epigenetic disorders in exposed individuals and their descendants,
namely to cytogenetic effects in the Chornobyl NPP accident clean-up workers and their children, DNA methylation
as an epigenetic modification of human genome. Data presented in review expand the understanding of risk of the
prolonged exposure for the present and future generations, which is one of key problems posed by fundamental radiation genetics and human radiobiology.
The Scientific Council meeting of NAMS approved the NRCRM Annual Report.
Key words: Chornobyl NPP accident, cytogenetic effects, DNA methylation.
Problems of Radiation Medicine and Radiobiology. 2021;26:36-56. doi: 10.33145/2304-8336-2021-26-36-56
full text |
1. Shevchenko VA, Snigiriova GP. [The importance of cytogenetic examination for assessing the consequences of the Chernobyl disaster]. Radiation Biology. Radioecology. 2006;46(2):133-139. Russian.
2. Snigireva GP, Novitskaya NN, Popova GM. [The value of cytogenetic examination for predicting the long-term effects of radiation]. Radiation Biology. Radioecology. 2011;51(1):162-167. Russian.
3. Vorobtsova IE, Semyonov AV. [Comprehensive cytogenetic characteristics of persons affected by the accident at the Chernobyl NPP]. Radiation Biology. Radioecology. 2006;46(2):140-152.
4. Sevankaev AV, Mikhailova GF, Potetnya OI, Tsepenko VV, Khvostunov IK, Golub EV, et al. [Results of dynamic cytogenetic observation of children and adolescents living in radioactively contaminated areas after the Chernobyl accident]. Radiation Biology. Radioecology. 2005;45(1):5-15. Russian.
5. Sevankaev AV, Parshin BC, Mikhailova GF, Khvostunov IK, Tsepenko VV, Potetnya OI, et al. [Comparative analysis of cytogenetic parameters with the morpho-functional state of thyroid in children and adolescents living from the moment of the accident at the Chernobyl NPP in the territories contaminated with radionuclides]. Radiation and Risk. 2006;15(1-2):134-145. Russian.
6. Mikhailova GF. [Analysis of the results of cytogenetic studies of population living in radioactively contaminated areas after the Chernobyl accident], [abstract thesis of dissertation Dr. Biol. Sci.]. Obninsk: Medical Radiological Research Center RAMS; 2007. 32 p. Russian.
7. Stepanova EI, Skvarskaya EA, Vdovenko VYu, Kondrashova VG. [Genetic consequences of the Chernobyl disaster in children born to irradiated parents]. Problems of Environmental and Medical Genetics and Clinical Immunology. 2004;7(60):312-320. Russian.
8. Vorobtsova IE. [Transgenerational transmission of radiation-induced genome instability]. Radiation Biology. Radioecology. 2006;46(4):441-446. Russian.
9. Aghajanyan A, Suskov I. Transgenerational genomic instability in children of irradiated parents as a result of the Chernobyl Nuclear Accident. Mutat Res. 2009;671(1-2):52-57. doi: 10.1016/j.mrfmmm.2009.08.012.
10. Pilinskaya MA, Dybsky SS, Shemetun EV, Dybskaya EB. [Somatic chromosomal mutagenesis in Ukrainian population affected by ionizing radiation at different times after the accident at the Chernobyl NPP]. Bulletin of the Russian Academy of Medical Sciences. 2011;9:63-68. Russian.
11. Akleev AV, Dubrova YuE, Ploshchanskaya OG, Kozionova OS. [Influence of chronic exposure to ionizing radiation on the frequency of mutations in minisatellite DNA loci of persons living in coastal villages of the Techa River]. Radiation Biology. Radioecology. 2007;47(5):558-566. Russian.
12. Dubrova YE, Ploshchanskaya OG, Kozionova OS, Akleyev AV. Minisatellite germline mutation rate in the Techa River population. Mutat Res. 2006;602:74-82. doi: 10.1016/j.mrfmmm.2006.08.001.
13. Dubrova YuE. Mutation induction in the mouse and human germline. Russian Journal of Genetics. 2016;52(1):17-28.
14. Dubrova Yu. Mutation induction in humans and mice: where are we now? Cancers (Basel). 2019;11(11):1708. doi: 10.3390/cancers11111708.
15. Wang J, Zhang Y, Xu K, Mao X, Xue L, Liu X, et al. Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice. PLoS One. 2014;9(3):e90804. doi: 10.1371/journal.pone.0090804.
16. Lima F, Ding D, Goetz W, Yang AJ, Baulch JE. High LET 56Fe ion irradiation induces tissue-specific changes in DNA methylation in the mouse. Environ Mol Mutagen. 2014;55(3):266-277. doi: 10.1002/em.21832.
17. Nzabarushimana E, Miousse IR, Shao L, Chang J, Allen AR, Turner J, et al. Long-term epigenetic effects of exposure to low doses of 56Fe in the mouse lung. Journal of Radiation Research. 2014;55(4):823–828. doi: 10.1093/jrr/rru010.
18. Impey S, Jopson T, Pelz C, Tafessu A, Fareh F, Zuloaga D, et al. Short- and long-term effects of 56Fe irradiation on cognition and hippocampal DNA methylation and gene expression. BMC Genomics. 2016;17(1):825. doi: 10.1186/s12864-016-3110-7.
19. Impey S, Jopson T, Pelz C, Tafessu A, Fareh F, Zuloaga D, et al. Bidirectional and shared epigenomic signatures following proton and 56Fe irradiation. Sci Rep. 2017;7(1):10227.
20. Shevchenko VA, Snigireva GP, Suskov II, Akaeva EA, Elisova TN, Iofa EL, et al. [Cytogenetic effects in the population of the Altai Territory exposed to ionizing radiation as a result of nuclear explosions at the Semipalatinsk test site]. Radiation Biology. Radioecology. 1995;35(5):588-596. Russian.
21. Pilinskaya MA. The results of selective cytogenetic monitoring of Chernobyl accident victims in the Ukraine. Health Phys. 1996;71(1):29-33. doi: 10.1097/00004032-199607000-00004.
22. Pilinskaya MA, Dybsky SS. [Frequency of chromosomal exchanges in critical groups of survivors of the Chernobyl accident according to the data of traditional cytogenetic analysis and the FISH method]. Int J Radiat Med. 2000;5:83-95. Russian.
23. Sevan'kaev AV, Lloyd DC, Edwards AA, Khvostunov IK, Mikhailova GF, Golub EV, et al. A cytogenetic follow-up of some highly irradiated victims of the Chernobyl accident. Radiat Prot Dosimetry. 2005;113(2):152-161. doi: 10.1093/rpd/nch435.
24. Nugis VYu, Dudochkina NE. [Regularities of elimination of chromosome aberrations in humans after acute irradiation according to the data of peripheral blood lymphocytes cultivation in the long term]. Radiation Biology. Radioecology. 2006;46(1):5-15. Russian.
25. Nugis VY, Nadejina NM, Galstyan IA, Dubochkina NE, Kozlova MG, Sevan'kaev AV, et al. Тhe results of 25 years of cytogenetic investigation of survivors who were exposed to different doses of irradiation during the Chernobyl accident. Biophysics. 2011;56(3):537-545. doi: 10.1134/S0006350911030195.
26. Elisova TV. [Stable and unstable chromosome aberrations in humans and other mammals in connection with biological dosimetry]. Radiation Biology. Radioecology. 2008;48(1)14-27. Russian.
27. Salnikova LE, Fomin DK, Elisova TV, Akaeva EA, Kuzmina NS, Lapteva NSh, et al. [Study of the relationship of cytogenetic and epidemiological indicators with genotypes in liquidators of the consequences of the ChNPP accident]. Radiation Biology. Radioecology. 2008;48(3):303-312. Russian.
28. Maznik NA, Vinnikov VA. The dynamics of the cytogenetic effects in the peripheral blood lymphocytes of those who worked in the cleanup of the aftermath of the accident at Chernobyl Atomic Electric Power Station. Tsitol Genet. 2004;31(6):41-7.
29. Svirnovskii AI, Ivanov EP, Danilov IP, Bakun AV, Ageichik VM, Ivanov VE. Unstable chromosome aberrations in lymphocytes of liquidators of the Chernobyl accident consequences. Ter Arkh. 1998;70(1):59-63.
30. Gomes MV, Toffoli LV, Arruda DW, Soldera LM, Pelosi GG, Neves-Souza RD, et al. Age-related changes in the global DNA methylation profile of leukocytes are linked to nutrition but 331 are not associated with the MTHFR C677T genotype or to functional capacities. PLoS One. 2012;7(12):e.525709. doi: 10.1371/journal.pone.0052570.
31. Neronova E, Slozina N, Nikiforov A. Chromosome alterations in cleanup workers sampled years after the Chernobyl accident. Radiat Res. 2003;160(1):46-51. doi: 10.1667/0033-7587(2003)160[0046:caicws]2.0.co;2.
32. Alexanin SS, Slozina NM, Neronova EG, Makarova NV. Chromosomal aberrations and sickness rates in Chernobyl clean-up workers in the years following the accident. Health Phys. 2010;98(2):258-260. doi: 10.1097/HP.0b013e3181b66e42.
33. Domracheva EV, Rivkind NB, Aseeva EA, Obukhova TN, D'achenko LV, Vorobiov AI. Stable and unstable aberrations in lymphocytes of Chernobyl accident clearance workers carrying rogue cells. Appl Radiat Isot. 2000;52(5):1153-1159. doi: 10.1016/s0969-8043(00)00063-4.
34. Pilinskaya MA, Dybskiy SS, Dybskaya YeB, Pedan LR. Radiation induced modification of human somatic cells chromosomes sensitivity to the testing mutagenic exposure of bleomycin. Tsitol Genet. 2010;44(2):58-64.
35. Vorobtsova IE, Vorobieva MV, Bogomazova AN, Pyukkenen AYu, Arkhangelskaya TB. [Cytogenetic examination of children in the St. Petersburg region affected by the ChNPP accident. Frequency of unstable chromosomal aberrations in peripheral blood lymphocytes]. Radiation Biology. Radioecology. 1995;5(35):630-635. Russian.
36. Vorobieva MV. [Investigation of the radiosensitivity of the chromosomes of children of irradiated parents], [author's abstract of dissertation Cand. Biol. Sci.]. St.-Petersburg: TsNIRRI MH RF; 1995. 16 p. Russian.
37. Stepanova EI, Vanyurikhina EA. [Clinical and cytogenetic characteristics of children born to persons who have suffered acute radiation sickness of 1 and 2 degrees as a result of the accident at the Chernobyl NPP]. Cytology and Genetics. 1993;27(4):10-13. Russian.
38. Stepanova EI, Vanyurikhina EA, Kondrashova VG, Scheplyagina LA. [Clinical and cytogenetic characteristics of children born to fathers who participated in the liquidation of the Chernobyl accident, who had acute radiation sickness]. Pediatrics. 1996;(1):63-64. Russian.
39. Pilinskaya MA, Dybsky SS. [Frequency of chromosomal aberrations in peripheral blood lymphocytes of children living in areas with different radioecological conditions]. Cytology and Genetics. 1992;26(2):11-17. Russian.
40. Eliseeva IM, Iofa EL, Stoyan EF, Shevchenko VA. [Analysis of chromosome aberrations and SCO in children from radiation-contaminated regions of Ukraine]. Radiation Biology. Radioecology. 1994;34(2):163-171. Russian.
41. Sevankaev AV, Potetnya OI, Zhloba AA, Moiseenko VV, Potetnya VI, Ankina MA, et al. [Results of cytogenetic examination of children and adolescents living in radionuclide-contaminated areas of the Kaluga region]. Radiobiology. Radioecology. 1995;35(5):581-588. Russian.
42. Mikhailova GF. [Comparative analysis of unstable and stable chromosomal aberrations in groups of persons irradiated in utero during the ChNPP accident at different periods of prenatal development]. Radiation and Risk. Bulletin of the National Radiation and Epidemiological Register. 2006;15(3-4):157-163. Russian.
43. Padovani L, Stronati L, Mauro F, Testa A, Appolloni M, Anzidei P, et al. Cytogenetic effects in lymphocytes from children exposed to radiation fall-out after the Chernobyl accident. Mutat Res. 1997;395:249-254. doi: 10.1016/s1383-5718(97)00137-x.
44. Stepanova EI, Misharina JA, Vdovenko VU. Remote cytogenetic effects in children exposed in prenatal period after the Chernobyl NPP accident. Genetic Consequences of Emergency Radiation Situations: Proceedings of International Conference; Moscow, RF; June 10-13 2002. Moscow; 2002. p. 185-187.
45. Stepanova EI, Vdovenko VYu, Misharina ZhA. [Postnatal effects in children exposed during intrauterine development as a result of the Chernobyl accident]. Radiation Biology. Radioecology. 2007;47(5):523-529. Russian.
46. Roberto B, Gemignani F, Morizzo C, Lori A, Rossi A, Antonelli A, et al. Cytogenetic damage in lymphocytes of healthy and thyroid tumor-affected children from the Gomel region (Belarus). Mutat Res. 1998;405(1):89-95. doi: 10.1016/s0027-5107(98)00118-3.
47. Livingston GK, Jensen RH, Silberstein EB, Hinnefeld JD, Pratt G, Bigbee WL, et al. Radiobiological evaluation of immigrants from the vicinity of Chernobyl. Int J Radiat Biol. 1997;72(6):703-713. doi: 10.1080/095530097142861.
48. Zotti-Martelli L, Migliore L, Panasiuk G, Barale R. Micronucleus frequency in Gomel (Belarus) children affected and not affected by thyroid cancer. Mutat Res. 1999;440(1):35-43. doi: 10.1016/s1383-5718(99)00012-1.
49. Khandogina EK, Ageikin VA, Zvereva SV, Marchenko LF, Mutovin GR, Snigireva GP, et al. [Cytogenetic examination of various groups of children living in areas of the Bryansk region contaminated as a result of the Chernobyl accident]. Radiation Biology. Radioecology. 1995;35(5):618-625. Russian.
50. Gemignani F, Ballardin M, Maggiani F, Rossi AM, Antonelli A, Barale R. Chromosome aberrations in lymphocytes and clastogenic factors in 330 plasma detected in Btlarus children 10 years after Chernobyl accident. Mutat Res. 1999;446:245-253. doi: 10.1016/s1383-5718(99)00194-1.
51. Ivanova TI, Mkrtchyan LS, Antoshchina MM, Fesenko EV, Khorokhorina VA, Ovsyannikova NS, et al. [Cytogenetic indices in sick and healthy women in radionuclide-contaminated areas of the Bryansk and Kaluga regions]. Radiation Biology. Radioecology. 2018;58(2):117-125. Russian.
52. Pelevina II, Afanasyev GG, Aleshchenko AV, Gotlib VYa, Kurneshova LE, Noskin VA, et al. [Radio-induced adaptive response in children and the influence of external and internal factors on it]. Radiation Biology. Radioecology. 1999;39(1):106-112. Russian.
53. Kuzmina NS, Suskov II, Shevchenko VA. [Dysgenomic effects in the body of children exposed to low-intensity radiation in small doses]. IN: Actual problems of biology, medicine and ecology. N.N. Ilyinsky (editor). Tomsk: Siberian State Med. University; 2004. p. 9-14. Russian.
54. Kuzmina NS, Lapteva NSh, Rusinova GG, Azizova TV, Vyazovskaya NS, Rubanovich AV. [Hypermethylation of gene promoters in human blood leukocytes in a long-term period after exposure to radiation]. Radiation Biology. Radioecology. 2017;57(4):341-356. Russian.
55. Kuzmina NS. [Radiation-induced abnormalities in DNA methylation: in vitro and in vivo studies]. Radiation Biology. Radioecology. 2020;60(5):481-506. Russian.
56. Kuzmina NS, Luong TM, Rubanovich AV. [Changes in DNA methylation induced by dioxins and dioxin-like compounds as potential predictor of disease risk]. Russian Journal of Genetics. 2020;56(10):1180-1192. Russian.
57. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293(5532):1068–1070. doi: 10.1126/science.1063852.
58. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–476. doi: 10.1038/nrg2341.
59. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–492. doi: 10.1038/nrg3230.
60. Pfeifer GP. Mutagenesis at methylated CpG sequences. Curr Top Microbiol Immunol. 2006;301:259-281. doi: 10.1007/3-540-31390-7_10.
61. Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980;8(7):1499-1504. doi: 10.1093/nar/8.7.1499.
62. Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet. 2000;1(1):11-19. doi: 10.1038/35049533.
63. Jaco I, Canela A, Vera E, Blasco MA. Centromere mitotic recombination in mammalian cells. J Cell Biol. 2008;181(6):885-892. doi: 10.1083/jcb.200803042.
64. Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007;8(4):299-309. doi: 10.1038/nrg2047.
65. Tomso DJ, Bell DA. Sequence context at human single nucleotidepolymorphisms: overrepresentation of CpG dinucleotide at polymorphic sitesand suppression of variation in CpG islands. J Mol Biol. 2003;327(2):303-308. doi: 10.1016/s0022-2836(03)00120-7.
66. Kulis M, Queiros AC, Beekman R, Martin-Subero JI. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta. 2013;1829(11):1161-1174. doi: 10.1016/j.bbagrm.2013.08.001.
67. Maunakea AK Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253-257. doi: 10.1038/nature09165.
68. Whitfield BL, Billen D. In vivo methylation of Escherichia coli DNA following ultraviolet and X-irradiation. J Mol Biol. 1972;63(3):363-372. doi: 10.1016/0022-2836(72)90433-0.
69. Kalinich JF, Catravas GN, Snyder SL. The effect of ?-radiation on dna methylation. Radiat Res. 1989;117(2):185-197.
70. Chaudhry MA, Omaruddin RA. Differential DNA methylation alterations in radiation-sensitive and -resistant cells. DNA and Cell Biology. 2012;31(6):908-916.
71. Lin RK, Wu CY, Chang JW, Juan LJ, Hsu HS, Chen CY, et al. Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res. 2010;70(14):5807-5817. doi: 10.1158/0008-5472.CAN-09-4161.
72. Peterson EJ, Bogler O, Taylor SM. p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding. Cancer Res. 2003;63(20):6579-6582.
73. Koturbash I, Miousse IR, Sridharan V, Nzabarushimana E, Skinner CM, Melnyk SB, et al. Radiation- induced changes in DNA methylation of repetitive elementsin the mouse heart. Mutat Res. 2016;787:43-53. doi: 10.1016/j.mrfmmm.2016.02.009.
74. Pogribny I, Koturbash I, Tryndyak V, Hudson D, Stevenson SM, Sedelnikova O, et al. Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus. Mol Cancer Res. 2005;3(10):553-561. doi: 10.1158/1541-7786.MCR-05-0074.
75. Miousse IR, Chang J, Shao L, Pathak R, Nzabarushimana E, Kutanzi KR, et al. Inter-strain differences in LINE-1 DNA methylation in the mouse hematopoietic system in response to exposure to ionizing radiation. Int J Mol Sci. 2017;18(7):E1430. doi: 10.3390/ijms18071430.
76. Merrifield M, Kovalchuk O. Epigenetics in radiation biology: a new research frontier. Frontiers in Genetics. 2013;4(40):1-16. doi: 10.3389/fgene.2013.00040.
77. Kuzmina NS. [Study of genomic instability in children living in areas with radionuclide contamination], [disssertation Cand. Med. Sci.]. Moscow: Institute of General Genetics. N.I. Vavilov Russian Academy of Sciences; 2003. 138 p. Russian.
78. Korenev NM, Borisko GA, Kashina-Yarmak VL. [The state of health of children born to families of parents exposed to radiation as a result of the Chernobyl accident]. Clinical Pediatrics. 2012;6(41):66-70. Russian.
79. Baleva LS, Sipyagina AE, Yakovleva IN, Karakhan NM, Egorova NI, Zemlyanskaya ZK. [Immunological features of disorders in children living in regions with different levels of radionuclide contamination after the Chernobyl NPP accident]. Russian Bulletin of Perinatology and Pediatrics. 2015;60(3):81-88. Russian.
80. Shcherbakov VI. [Apoptosis in the trophoblast and its role in pregnancy pathology]. Advances Modern Biology. 2011;131(2):145-158. Russian.
81. Dubova EA, Buranova FB, Fedorova TA, Shchegolev AI, Sukhikh GT. [Morphological characteristics of terminal villi in placental insufficiency]. Bull Expert Biol. Med. 2013;155(4):505-509. Russian.
82. Karavanaki K., Karanika E., Georga S., Bartzeliotou A., Tsouvalas M., Konstantopoulos I. et al. Cytokine response to diabetic ketoacidosis (DKA) in children with type 1 diabetes (T1DM). Endocr J. 2011;58(1):1045-1053. doi: 10.1507/endocrj.ej11-0024.
83. Uchakin PN, Uchakina ON, Tobin BV, Ershov FI. Neuroendocrine regulation of immunity. Vestnik Russian AMS. 2007;9:26-32. Russian.
84. Sipyagina AE, Baleva LS, Yurov IYu, Sukhorukov VS, Karakhan NM. [Variants of fetal radiation syndrome in children born to irradiated parents]. Russian Bulletin of Perinatology and Pediatrics. 2018;63(4):283-284. Russian.
85. Kucher EV, Gaidukova SN, Moroz GI, Vydyborets SV, Sergienko AV. The role of genetic factors in the onset and development of acute leukemia in children. Kyiv; 2013. 192 p. Russian.
86. Ellis CD, Djenjuvein T, Reinberg D. [Epigenetics]. Moscow; 2010. 496 p. Russian.
|
|
| |
|
© 2013 Problems of Radiation Medicine |
| | |
|
|