|
|
|
National Academy of Medical Sciences of Ukraine State Institution "The National Research Center for Radiation Medicine"
|
ISSN 2313-4607 (Online) ISSN 2304-8336 (Print) |
Problems of Radiation Medicine and Radiobiology |
|
|
|
|
|
|
O. V. Korkushko1, E. M. Gorban1, O. V. Bondarenko1, I. A. Antonyuk/Shcheglova1,
S. S. Naskalova1, O. V. Parshykov2, N. O. Utko1, A. V. Gavalko1, V. B. Shatilo1, G. V. Duzhak1
1State Enterprise «Institute of Gerontology DF Chebotareva NAMS of Ukraine», 67 Vyshgorodska St.,
Kyiv, 04114, Ukraine
2State Enterprise «Institute of Pharmacology and Toxicology NAMS of Ukraine», 14 Antona Tsedika St.,
Kyiv, 02000, Ukraine
APPLICATION OF QUERCETIN FOR CORRECTION OF THE IMPAIRMENT OF THE FUNCTIONAL STATE OF THE ENDOTHELIUS OF VESSELS (CLINICAL AND EXPERIMENTAL STUDY)
Objective. in the experiment, to investigate the effect of Quercetin on the NO-dependent reactions of isolated vessels involving endothelium and perivascular adipose tissue (PVAT) after a single X-ray irradiation of rats at a sublethal dose. In a clinical study, to investigate the effect of long-term use of Quercetin on the functional state of the
microvascular endothelium in the elderly patients with metabolic syndrome (MS).
Material and methods. Experimental studies were performed on vascular fragments obtained from adult male rats
(7–8 months) of the control group, in animals exposed to a single R-irradiation at a dose of 7 Gy and animals irradiated in the same dose, which received Quercetin orally for 14 days three times a week based on 10 mg/kg body
weight. Fragments of the thoracic aorta (TA) and mesenteric artery (MA) were cleaned of perivascular adipose tissue (PVAT-) or left uncleaned (PVAT+), and then were cut into rings (up to 2 mm). The amplitude of the contraction
of the rings TA and MA under the influence of phenylephrine (PE, 3 x 10-6 M), the amplitude of the contraction of the
rings TA and MA in the presence of a competitive blocker of NO-synthase methyl ester of N-nitro-L-arginine
(L-NAME, 10-5 M), the amplitude of relaxation of the rings TA and MA in the presence of N-acetylcysteine (NAC, 10-4 M)
were measured. The clinical study examined 110 patients with MS criteria in accordance with ATP III (2001).
Patients in the main group for 3 months received Quercetin from the same manufacturer, 80 mg three times a day,
patients in the control group received placebo.
Results. Single R-irradiation disrupts the regulation of the contractile function of TA and MA, which is evidenced by
changes in the contractile reactions of isolated fragments of these vessels as a response to the action of vasoactive
compounds. Course use of Quercetin in irradiated rats leads to the normalization of contractile and dilatory vascular responses due to partial correction of NO metabolism in the endothelium and PVAT. For the majority of patients
(69 %) who received Quercetin, a post-occlusive hyperemia test showed a statistically significant increase of maximal volumetric velocity of the skin blood flow rate and duration of the recovery period to the baseline, which indicates about improvement of vasomotor vascular endothelial function.
Conclusions. Course use of Quercetin improves the functional state of the microvascular endothelium among the
elderly people with MS, normalizes contractile and dilatory vascular responses in irradiated rats due to partial correction of NO metabolism in the endothelium and PVAT.
Key words: X-ray irradiation, Quercetin, isolated vessels, endothelium, perivascular adipose tissue, metabolic syndrome, functional state of endothelium.
Problems of Radiation Medicine and Radiobiology. 2020;25:321-337. doi: 10.33145/2304-8336-2020-25-321-337
full text |
1. Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Physiol Rev. 2008;88(2):389-419. doi: 10.1152/physrev.00017.2007.
2. Li AH, Lee BC, Chen KC, Weng CS, Chu SH. Brachial artery flow-mediated vasodilation in patients with cardiac syndrome X. Angiology. 2008;59(5):581-586. doi: 10.1177/0003319707308032.
3. Frolkis VV. [Aging: neurohumoral mechanisms]. Êyiv: Nauk. Dumka; 1981. 310 p. Russian.
4. Wang J, Boerma M, Fu Q, Hauer-Jensen M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J Gastroenterol. 2007;13(22):3047-3055. doi: 10.3748/wjg.v13.i22.3047.
5. Soltesz P, Bereczki D, Szodoray P, Magyar MT, Der H, Csipo I, et al. Endothelial cell markers reflecting endothelial cell dysfunction in patients with mixed connective tissue disease. Arthritis Res Ther. 2010;12(3):R78. doi: 10.1186/ar2999.
6. Berenyiova A, Drobna M, Cebova M, Kristek F, Cacanyiova S. Changes in the vasoactive effects of nitric oxide, hydrogen sulfide and the structure of the rat thoracic aorta: the role of age and essential hypertension. J Physiol Pharmacol. 2018;69(4). doi: 10.26402/jpp.2018.4.05.
7. Babik B, Petak F, Agocs S, Blaskovics I, Alacs E, Bodo K, Sudy R. Diabetes mellitus: endotheldiszfunkcio es haemostasiselvaltozasok [Diabetes mellitus: endothelial dysfunction and changes in hemostasis]. Orv Hetil. 2018;159(33):1335-1345. Hungarian. doi: 10.1556/650.2018.31130.
8. Tkachenko MM, Kotsuruba AV, Sagach VF. [Vascular reactivity and metabolism of oxygen and nitrogen under conditions of low doses of radiation]. Pathology. 2008;5(3):160-167.
9. Soloviev AI, Tishkin SM, Parshikov AV, Ivanova IV, Goncharov EV, Gurney AM. Mechanisms of endothelial dysfunction after ionized radiation: selective impairment of the nitric oxide component of endothelium-dependent vasodilation. Br J Pharmacol. 2003 Mar;138(5):837-844. doi: 10.1038/sj.bjp.0705079.
10. Gollasch M. Vasodilator signals from perivascular adipose tissue. Br J Pharmacol. 2012;165(3):633-42. doi: 10.1111/j.1476-5381.2011.01430.x.
11. Withers SB, Simpson L, Fattah S, Werner ME, Heagerty AM. cGMP-dependent protein kinase (PKG) mediates the anticontractile capacity of perivascular adipose tissue. Cardiovasc Res. 2014;101(1):130-7. doi: 10.1093/cvr/cvt229.
12. Zaborska KE, Wareing M, Austin C. Comparisons between perivascular adipose tissue and the endothelium in their modulation of vascular tone. Br J Pharmacol. 2017;174(20):3388-3397. doi: 10.1111/bph.13648.
13. Fesus G, Dubrovska G, Gorzelniak K, Kluge R, Huang Y, Luft FC, Gollasch M. Adiponectin is a novel humoral vasodilator. Cardiovasc Res. 2007;75(4):719-727. doi: 10.1016/j.cardiores.2007.05.025.
14. Payne GA, Bohlen HG, Dincer UD, Borbouse L, Tune JD. Periadventitial adipose tissue impairs coronary endothelial function via PKC-beta-dependent phosphorylation of nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2009;297(1):H460-465. doi: 10.1152/ajpheart.00116.2009.
15. Ozen G, Daci A, Norel X, Topal G. Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling. Eur J Pharmacol. 20155;766:16-24. doi: 10.1016/j.ejphar.2015.09.012.
16. Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009-1023. doi: 10.1093/cvr/cvx108.
17. Kalender Y, Kaya S, Durak D, Uzun FG, Demir F. Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ Toxicol Pharmacol. 2012;33(2):141-148. doi: 10.1016/j.etap.2011.12.008.
18. Kook D, Wolf AH, Yu AL, Neubauer AS, Priglinger SG, Kampik A, Welge-Lussen UC. The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci. 2008;49(4):1712-1720. doi: 10.1167/iovs.07-0477.
19. Edremitlioglu M, Andic MF, Korkut O. Quercetin, a powerful antioxidant bioflavonoid, prevents oxidative damage in different tissues of long-term diabetic rats. Balkan Med J. 2012;(1):49-55. https://doi.org/10.5152/balkanmedj.2011.002.
20. Gorban EM, Parshykov OV. [Quercetin is susceptible to the changes in the reactivity of sudin in schuras, which are abnormal in sublethal doses]. Klin Experiment Patol. 2017;16(2):112-116. Ukrainian.
21. Rybakova A, Makarova M. [Methods of euthanasia of laboratory animals, in accordance with European Directive 2010/63]. International Bulletin of Veterinary Medicine. 2015;(2):P. 96-107. Russian.
22. [On the Protection of Animals from Brutal Treatment]: The Law of Ukraine ¹3447-IV. Information of the Verkhovna Rada of Ukraine. 2006;(27):990. Ukrainian.
23. Vlasova MA, Vanin AF, Mueller B, et al. [Identification and characteristics of different pools of nitrogen oxide depots in the vessel wall]. Bulletin of Experimental Biology and Medicine. 2003;136(9):260-264. Russian.
24. Mitchenko O², Korpachev VV; Ukrainian Association of Cardiologists and Ukrainian Association of Endocrinologists. [Diagnostics and treatment of metabolic syndrome, diabetics, pre-diabetes and cardiovascular disease]: Guidelines. Kyiv; 2009. 29 p. Ukrainian.
25. Korkushko OV, Lishnevskaya VYu, Duzhak GV. [Microvessel endothelial function: Age peculiarities]. Circulation and haemostasis. 2007;(4):5-11. Russian.
26. Wierzchowska W, Maugeri U. Epidemiological methods in studying chronic diseases. Poland; 2000. 402 p. [125-149, 243-247 pp.]
27. Muller B, Kleschyov AL, Alencar JL, Vanin A, Stoclet JC. Nitric oxide transport and storage in the cardiovascular system. Ann N Y Acad Sci. 2002;962:131-139. doi: 10.1111/j.1749-6632.2002.tb04063.x.
28. Gajdusek C, Onoda K, London S, Johnson M, Morrison R, Mayberg M. Early molecular changes in irradiated aortic endothelium. J Cell Physiol. 2001;188(1):8-23. doi: 10.1002/jcp.1091.
29. Eringa EC, Bakker W, van Hinsbergh VW. Paracrine regulation of vascular tone, inflammation and insulin sensitivity by perivascular adipose tissue. Vascul Pharmacol. 2012;56(5-6):204-209. doi: 10.1016/j.vph.2012.02.003.
30. Manukhina EB, Downey GF, Mallet RT, et al. [Nitric oxide (NO) depot and its adaptive role in the cardiovascular system]. Pathogenesis. 2012;10(2):19-27. Russian.
31. Berbee M, Fu Q, Boerma M, Pathak R, Zhou D, Kumar KS, Hauer-Jensen M. Reduction of radiation-induced vascular nitrosative stress by the vitamin E analog ?-tocotrienol: evidence of a role for tetrahydrobiopterin. Int J Radiat Oncol Biol Phys. 2011;79(3):884-891. doi: 10.1016/j.ijrobp.2010.08.032.
32. Kondratiuk VE, Synytsia YP. Effect of quercetin on the echocardiographic parameters of left ventricular diastolic function in patients with gout and essential hypertension. Wiadomosci Lekarskie (Warsaw, Poland : 1960). 2018;71(8):1554-1559.
33. Sanchez M, Galisteo M, Vera R, Villar IC, Zarzuelo A, Tamargo J, et al. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens. 2006;24(1):75-84. doi: 10.1097/01.hjh.0000198029.22472.
|
|
| |
|
© 2013 Problems of Radiation Medicine |
| | |
|
|