|
|
|
National Academy of Medical Sciences of Ukraine State Institution "The National Research Center for Radiation Medicine"
|
ISSN 2313-4607 (Online) ISSN 2304-8336 (Print) |
Problems of Radiation Medicine and Radiobiology |
|
|
|
|
|
|
V. V. Chumak, N. P. Petrenko, O. V. Bakhanova, V. M. Voloskyi, T. V. Treskunova
State Institution «National Research Center for Radiation Medicine of the National Academy of Medical
Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
USE OF ANTHROPOMORPHIC HETEROGENEOUS PHYSICAL PHANTOMS FOR VALIDATION OF COMPUTATIONAL DOSIMETRY OF MEDICAL PERSONNEL AND PATIENTS
In the dosimetry of ionizing radiation, the phantoms of the human body, which are used as a replacement for the
human body in physical measurements and calculations, play an important, but sometimes underestimated, role.
There are physical phantoms used directly for measurements, and mathematical phantoms for computational
dosimetry. Their complexity varies from simple geometry applied for calibration purposes up to very complex, which
simulates in detail the shapes of organs and tissues of the human body. The use of physical anthropomorphic phantoms makes it possible to effectively optimize radiation doses by adjusting the parameters of CT-scanning (computed tomography) in accordance with the characteristics of the patient without compromising image quality. The use
of phantoms is an indispensable approach to estimate the actual doses to the organs or to determine the effective
dose of workers – values that are regulated, but cannot be directly measured.
The article contains an overview of types, designs and the fields of application of anthropomorphic heterogeneous
physical phantoms of a human with special emphasis on their use for validation of models and methods of computational dosimetry.
Key words: dose, ionizing radiation, physical, mathematical phantoms, computational dosimetry.
Problems of Radiation Medicine and Radiobiology. 2020;25:148-176. doi: 10.33145/2304-8336-2020-25-148-176
full text |
1. [Word formation: a platform for translations of borrowed words]. Available from: https://slovotvir.org.ua/words/fantom. (Last accessed: 01.09.2020). Ukrainian.
2. MCNP – A General Monte-Carlo N-Particle Transport Code: Version 4B. Briesmeister J, editor. LA-12625-M, Los Alamos; 1997. 497 p.
3. Xu XG. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol. 2014;59(18):R233-R302.
4. Hadad K, Saeedi-Moghadam M, Zeinali-Rafsanjani B. Voxel dosimetry: comparison of MCNPX and DOSXYZnrc Monte Carlo codes in patient specific phantom calculations. Technology and Health Care. 2017;25(1):29-35.
5. Kienbock R. On the quantimeric method. Arch Roentgen Ray. 1906;11(1):17-20.
6. Friedrich W, Glasser O. The distribution of the radiation dose in intracorporeal radium and mesothorium therapy. In: Kroening B, Friedrich W, editors. the principles of physics and biology of radiation therapy. London: Heinemann; 1922. p. 241.
7. Schmitz H, Huth E. The determination of equal intensity curves (isodoses) of short radium capsules. In: Kroening B, Friedrich W, editors. The principles of physics and biology of radiation therapy. London: Heinemann; 1922. p. 255.
8. Quimby EH. The intensity of radiation in the vicinity of filtered radon implants. Radiology. 1928;10(5):365-367.
9. Jones DEA, Raine HC. A letter to the editor. Br J Radiol. 1949;22:549.
10. Failla G. The measurement of tissue dose in terms of the same unit for all ionizing radiations. Radiology. 1937;29(2):202.
11. Quimby EH, Marinelli LD, Farrow JH. A study of backscatter. Am J Roentgenol. 1938;39:799.
12. Lincoln TA, Gupton ED. Radiation doses in diagnostic X-ray procedures. Radiology. 1958;71:208.
13. Jacobs ML, Pape L. Dosimetry for a total-body irradiation chamber. Radiology. 1961;77:788.
14. Stacey AJ, Bevan AR, Dickens CW. A new phantom material employing depolymerised natural rubber. Br J Radiolology. 1961;34:510.
15. Alderson SW, Lanzl LH, Rollins M, Spira J. An instrumented phantom system for analog computation of treatment plans. Am J Roentgenol. 1962;87:185.
16. Tanaka G-I, Kawamura H, Nakahara Y. Reference Japanese Man-I. Mass of organs and other characteristics of normal Japanese. Health Phys. 1979a;36:333.
17. International Commission on Radiation Units and Measurement. ICRU Report 48. Phantoms and Computational Models in Therapy Diagnosis and Protection. Maryland: Bethesda. 1992.
18. International Commission on Radiation Units and Measurement. ICRU Report 10d. Clinical dosimetry. Published as National Bureau of Standards Handbook 87. Washington, D. C.: U.S. Government Prinying Office; 1963. 61 p.
19. International Commission on Radiation Units and Measurement. ICRU Report 23. Measurement of absorbed dose in a phantom irradiated by a single beam of X or gamma rays. Journal of the International Commission on Radiation Units and Measurements. 1973;12(2). doi: 10.1093/jicru/os12.2.Report23.
20. International Commission on Radiation Units and Measurement. ICRU Report 35. Radiation dosimetry: electron beams with energies between 1 and 50 MeV. Journal of the International Commission on Radiation Units and Measurements. 1984;18(2).
21. International Commission on Radiation Units and Measurement. ICRU Report 45. Clinical neutron dosimetry-part I: determination of absorbed dose in a patient treated by External Beams of Fast Neutrons. Journal of the International Commission on Radiation Units and Measurements. 1989;23(2). doi: 10.1093/jicru/os23.2.Report45.
22. International Commission on Radiation Units and Measurement. Radiation quantities and units: ICRU Report 33. Journal of the International Commission on Radiation Units and Measurements. 1980;17(2). doi: 10.1093/jicru/os17.2.Report33.
23. International Commission on Radiation Units and Measurement. ICRU Report 50. Prescribing, recording and reporting photon beam therapy. Journal of the International Commission on Radiation Units and Measurements. 1993;26(1). doi:10.1093/jicru/os26.1.Report50.
24. Varchena V. Pediatric phantoms. Pediatr. Radiol. 2002;32:280-285.
25. Compagnone G, Pagan L, Bergamini C. Comparison of six phantoms for entrance skin dose evaluation in 11 standard X-ray examinations. J Appl Clin Med Phys. 2005;6(1):101-113.
26. Jimenez R, DeGuzman M, Shiran S, Karrellas A, Lorenzo R. CT versus plain radiographs for evaluation of c-spine injury in young children: do benefits outweigh risks? Pediatr Radiol. 2008;38:635-644.
27. Helmrot E, Pettersson H, Sandborg M, Alten JN. Estimation of dose to the unborn child at diagnostic X-ray examinations based on data registered in RIS/PACS 2006. Eur Radiol. 2007;17:205-9.
28. Golikov V, Barkovsky A, Wallstrom E, Cederblad A. A comparative study of organ doses assessment for patients undergoing conventional X-ray examinations: phantom experiments vs. Calculations. Radiat Prot Dosimetry. 2018;178(2):223-234.
29. Axelsson B, Persliden J, Schuwert P. Dosimetry for computed tomography examination of children. Radiat Prot Dosimetry. 1996;64(3):221-226.
30. Axelsson B, Khalil C, Lidegran M, Schuwert P. Estimating the effective dose to children undergoing heart investigation – phantom study. Br J Radiol. 1999;72:378-383.
31. Wildgruber M, Muller-Wille R, Goessmann H, Uller W, Wohlgemuth WA. Direct effective dose calculations in pediatric fluoroscopy-guided abdominal interventions with Rando-Alderson phantoms – optimization of preset parameter settings. PLoS One. 2016;11(8):e0161806. doi:10.1371/journal.pone.0161806.
32. Brix G, Lechel U, Veit R, Truckenbrodt R, Stamm G, Coppenrath EM et al. Assessment of a theoretical formalism for dose estimation in CT: an anthropomorphic phantom study. Eur Radiol. 2004;14(7):1275-1284.
33. Hurwitz LM, Reiman RE, Yoshizumi TT, Goodman PC, Toncheva G, Nguyen G et al. Radiation dose from contemporary cardiothoracic multidetector CT protocols with an anthropomorphic female phantom: Implications for Cancer Induction. Radiology. 2007;245(3):742-750.
34. Groves AM, Owen KE, Courtney HM, Yates SJ, Goldstone KE, Blake GM, Dixon AK. 16-detector multislice CT: dosimetry estimation by TLD measurement compared with Monte Carlo simulation. Br J Radiol. 2004;77(920):662-665.
35. Chumak V, Morgun A, Bakhanova E, Voloskiy V, Borodynchik E. Optimization of the double dosimetry algorithm for interventional cardiologists. Radiat Phys Chem. 2014;104:51-54.
36. Hood C, Kron T, Hamilton C, Callan S, Howlett S, Alvaro F, Back M. Correlation of 3D-planned and measured dosimetry of photon and electron craniospinal radiation in a pediatric anthropomorphic phantom. Radiother Oncol. 2005;77:111-116.
37. Shrimpton PC, Wall BF, Fisher ES. The tissue-equivalence of the Alderson Rando anthropomorphic phantom for X-rays of diagnostic qualities. Phys Med Biol. 1981;26(1):133-139.
38. Sessions JB, Roshau JN, Tressler MA, Hintenlang DE, Arreola MM, Williams JL, et al. Comparisons of point and average organ dose within an anthropomorphic physical phantom and a computational model of the newborn patie. Med Phys. 2002;29:1080-1089.
39. Mazonakis M, Damilakis J, Varveris H, Fasoulaki M, Gourtsoyiannis N. Risk estimation of radiation-incuced thyroid cancer from treatment of brain tumors in adults and children. Int J Oncol. 2003;22:221-225.
40. Rodrigues P, Trindade A, Peralta L, Alves C, Chaves A, Lopes MC. Application of GEANT4 radiation transport toolkit to dose calculations in anthropomorphic phantoms. Appl Radiat Isot. 2004;61:1451-1461.
41. Staton RJ, Jones AK, Lee C, Hintenlang DE, Arreola MM, Williams JL, Bolch WE. A tomographic physical phantom of the newborn child with real-time dosimetry. II. Scaling factors for calculation of mean organ dose in pediatric radiography. Med Phys. 2006;33:3284-3289.
42. Struelens L, Vanhavere F, Smans K. Experimental validation of Monte Carlo calculations with a voxelized Rando–Alderson phantom: a study on influence parameters. Phys Med Biol. 2008;53:5831-5844.
43. Cohnen M, Poll LW, Puettmann C, Ewen K, Saleh A, Modder U. Effective doses in standard protocols for multi-slice CT scanning. Eur Radiol. 2003;13:1148-1153.
44. Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA. Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol. 2008;18:759-772.
45. Fujii K, Aoyama T, Yamauchi-Kawaura C, Koyama S, Yamauchi M, Ko S, et al. Radiation dose evaluation in 64-slice CT examinations with adult and pediatric anthropomorphic phantoms. Br J Radiol. 2009;82 (984):1010-1018.
46. Gharbi S, Labidi S, Mars M, Chelli M, Meftah S, Ladeb MF. Assessment of organ dose and image quality in head and chest CT examinations: a phantom study. J Radiol Prot. 2018;38:807-818.
47. Huda W, Ogden KM, Khorasani MR. Effect of dose metrics and radiation risk models when optimizing CT x-ray tube voltage. Phys Med Biol. 2008;53(17):4719-4732.
48. Feng ST, Law MWM, Huang B, Ng S, Li ZP, Meng QF, Khong PL. Radiation dose and cancer risk from pediatric CT examinations on 64-slice CT: A phantom study. Eur Radiol. 2010;76(2):e19-e23.
49. Masuda T, Funama Y, Kiguchi M, Osawa K, Suzuki S, Oku T, et al. Relationship between the radiation doses at nonenhanced CT studies using different tube voltages and automatic tube current modulation during anthropomorphic phantoms of young children. J Appl Clin Med Phys. 2017;18(6):232-243.
50. Yamauchi-Kawaura C, Fujii K, Aoyama T, Koyama S, Yamauchi M. Radiation dose evaluation in head and neck MDCT examinations with a 6-year-old child anthropomorphic phantom. Pediatr Radiol. 2010;40 (7):1206-1214.
51. Stadnyk LL, Nosyk OV. Determination of the patients effective doses for most common X-ray examinations by phantom simulation. Probl Radiat Med Radiobilol. 2019;24:180-194.
52. Bouacid SS, Kharfi F, Boulakhssaim F. Comparison of measured and calculated doses in a RANDO phantom with a realistic lung radiotherapy treatment plan including heterogeneities. Radiat Environ Biophys. 2018;57:365-373.
53. Pranditayana NI, Setiadi AR, Ramadhan MM, Tandian D, Pawiro SA. Verification of dose distribution on the gamma knife perfexion radiosurgery using gafchromic EBT3 film: RANDO phantom study. J Phys Conf Ser. 2020;1528:012028.
54. Behmadi M, Gholamhosseinian H, Mohammadi M, Naseri S, Momennezhad M, Bayani S et al. Evaluation of breast cancer radiation therapy techniques in outfield organs of RANDO Phantom with thermoluminescence dosimeter. J Biomed Phys Eng. 2019;9(2):179-188.
55. Bahreyni Toossi M, Soleymanifard S, Farhood B, Mohebbi S, Davenport D. Assessment of accuracy of out-of-field dose calculations by TiGRT treatment planning system in radiotherapy. J Cancer Res Ther. 2018;14(3):634-639.
56. Mein S, Kopp B, Tessonier T, Ackermann B, Ecker S, Bauer Y et al. Dosimetric validation of Monte Carlo and analytical dose engines with raster-scanning 1H, 4He, 12C, and 16O ion-beams using an anthropomorphic phantom. Phys Medica. 2019;64:123-131.
57. United Nations Scientific Committee on the Effects of atomic radiation: UNSCEAR 2008. Sources and effects of ionizing radiation. Report to the General Assembly with scientific annex. New York: UN; 2010. 143 p.
58. National Council on Radiation Protection and Measurements. Medical radiation exposure of patients in the united states. NCRP Report no. 184. Bethesda, Maryland: National Council on Radiat Prot Meas. 2019.
59. Kainz W, Neufeld E, Bolch WE, Graff CG, Kim CH, Kuster N et al. Advances in computational human phantoms and their applications in biomedical engineering – a topical review. IEEE Trans Radiat Plasma Med Sci. 2019;3(1):1-23.
60. Schmidt B, Kalender WA. A fast voxel-based Monte Carlo method for scanner- and patient-specific dose calculations in computed tomography. Phys Medica. 2002;18(2):43-53.
61. De Mattia C, Campanaro F, Rottoli F, Colombo PE, Pola A, Vanzulli A, Torresin A. Patient organ and effective dose estimation in CT: comparison of four software applications. Eur Radiol Exp. 2020;4:14.
62. Snyder WS, Ford MR, Warner GG, Watson GG. Revision of MIRD Pamphlet No 5 entitled estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. ORNL-4979, Oak Ridge; 1974.
63. Cristy M. Mathematical phantoms representing children at various ages for use in estimates of internal dose, Report ORNL/NUREG/TM-367, Oak Ridge National Laboratory. Oak Ridge, Tenn., USA; 1980.
64. Kramer R, Zankl M, Williams G, Drexler G. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part I: The male (ADAM) and female (EVA) adult mathematical phantoms. GSF-Report S-885. Reprint July 1999. Neuherberg-Munchen: Institut fur Strahlenschutz, GSF-Forschungszentrum fur Umwelt und Gesundheit; 1982.
65. Fisher HL, Snyder WS. Distribution of dose in the body from a source of gamma rays distributed uniformly in an organ. In: The First International Congress on Radiation Protection. Oxford: Pergamon Press; 1968. p. 1473-1486.
66. Snyder WS, Ford MR, Warner GG, Fisher JHL. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med. 1969;10(3):7-52.
67. Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D. The visible human male: A technical report. J Am Med Inform Assoc. 1996;3:118-30.
68. International Commission on Radiological Protection. ICRP Publication 60. Recommendations of the ICRP. Ann ICRP. 1991;21(1-3).
69. International Commission on Radiological Protection. ICRP Publication 103. The 2007 Recommendations of the International Commission on Radiological Protection. Ann ICRP. 2007;37(2-4):1-332.
70. Voloskyi V, Chumak V, Bakhanova E, Morgun A. Testing and validation of methods for dose measuring in anisotropic fields under occupational exposure in interventional cardiology. Probl Radiac Med Radiobilol. 2013;18:70-81.
71. Volosky V, Bakhanova E, Chumak V. Determination of angular distributions of workplace photon fields in a context of effective dose estimation. Radiat Prot Dosimetry. 2011;144(1-4):636-639.
72. Chumak V, Bakhanova E. Assessment of effective dose with personal dosimeters: Account of the effect of anisotropy of workplace fields. Radiat Meas. 2008;43(2-6):655-658.
73. Harbron R, Thierry-Chef I, Pearce M, Bernier M, Dreuil S, Rage E, et al. The HARMONI C project: Study design for assessment of cancer risks following cardiac fluoroscopy in childhood. J Radiol Prot. 2020 Jul 15. doi: 10.1088/1361-6498/aba66d.
74. Cloonan AJ, Shahmirzadi D, Li RX, Doyle BJ, Konofagou EE, McGloughlin TM. 3D-pinted tissue-mimicking phantoms for medical imaging and computational validation applications. 3D printing and additive manufacturing. 3D Print Addit Manuf. 2014;1(1):14-23.
75. Homolka P, Figl M, Wartak A, Glanzer M, Dunkelmeyer M, Hojreh A, et al. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications. Physics Med Biol. 2017;62(8):3158.
|
|
| |
|
© 2013 Problems of Radiation Medicine |
| | |
|
|