1. Goodhead DT. New radiobiological, radiation risk and radiation protection paradigms. Mutat Res. 2010;687:13-6. DOI: https://doi.org/10.1016/j.mrfmmm.2010.01.006.
2. Djordjevic B. Bystander effects: a concept in need of clarification. Bioessays. 2000;22:286-90. DOI: https://doi.org/10.1002/(SICI)1521-1878(200003)22:3<286::AID-BIES10>3.0.CO;2-S
3. Tomita M, Maeda M. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses. J Radiat Res. 2015;56(2):205-19. DOI: https://doi.org/10.1093/jrr/rru099.
4. Mothersill C, Seymour C. Radiation-induced bystander effects: past history and future directions. Radiat Res. 2001;155(6):757-65.
5. Shemetun OV, Pilins’ka MA. Radiation-induced “bystander” effect. Cytol Genet. 2007;41(4)251-5. DOI: https://doi.org/10.3103/S0095452707040111.
6. Widel M. Radiation induced bystander effect: from in vitro studies to clinical application. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology. 2016;5:1-17. DOI: http://dx.doi.org/10.4236/ijmpcero.2016.51001
7. Verma N, Tiku AB. Significance and nature of bystander responses induced by various agents. Mutat Res. 2017;773:104-21. DOI: 10.1016/j.mrrev.2017.05.003.
8. Burdak-Rothkamm S, Rothkamm K. Radiation-induced bystander and systemic effects serve as a unifying model system for genotoxic stress responses. Mutat Res. 2018;778:13-22. DOI: 10.1016/j.mrrev.2018.08.001.
9. Pouget J-P, Georgakilas AG, Ravanat J-L. Targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis. Antioxid Redox Signal. 2018;29(15):1447-87. DOI: 10.1089/ars.2017.7267
10. Mothersill C, Rusin A, Fernandez-Palomo C, Seymour C. History of bystander effects research 1905-present; what is in a name? Int J Radiat Biol. 2018;94(8):696-707. doi: 10.1080/09553002.2017.1398436.
11. Parsons WB, Watkins CH, Pease GL, Childs DS. Changes in sternal marrow following roentgen-ray therapy to the spleen in chronic granulocytic leukemia. Cancer. 1954;7:179-89.
12. Seymour CB, Mothersill C, Alper T. High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;50(1):167-79.
13. Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res. 1992;52:6394-6.
14. Deshpande A, Goodwin EH, Bailey SM, Marrone BL, Lehnert BE. Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extranuclear target. Radiat Res. 1996;145:260-7.
15. Nagasawa H, Little JB. Unexpected sensitivity to the induction of mutations by very low doses of alpha-particle radiation: evidence for a bystander effect. Radiat Res. 1999;152:552-7.
16. Prise KM, Belyakov OV, Newman HC, Patel S, Schettino G, Folkard M, et al. Non-targeted effects of radiation: bystander responses in cell and tissue models. Radiat Prot Dosimetry. 2002;99(1-4):223-6. https://doi.org/10.1093/oxfordjournals.rpd.a006768
17. Hill MA, Stevens DL, Kadhim M, Blake-James M, Mill AJ, Goodhead DT. Experimental techniques for studying bystander effects in vitro by high and low-LET ionising radiation. Radiat Prot Dosimetry. 2006;122(1-4):260-5.
18. Thust R, Tomicic MT, Grabner R, Friedrichs C, Wutzler P, Kaina B. Cytogenetic detection of trans-species bystander effect: induction of sister chromatid exchanges in murine 3T3 cells by ganciclovir metabolized in HSV thymidine kinase gene-transfected Chinese hamster ovary cells. Mutagenesis. 2004;19(1):27-33. https://doi.org/10.1093/mutage/geh002
19. Mothersill C, Fernandez-Palomo C, Fazzari J, Smith R, Sch ?ultke E, Br ?auer-Krisch E, et al. Transmission of signals from rats receiving high doses of microbeam radiation to cage mates: an inter-mammal bystander effect. Dose Response. 2014;12(1):72-92. https://doi.org/10.2203/dose-response.13-011.Mothersill
20. Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci. 2015;8(2):247-54. DOI: https://doi.org/10.1158/0008-5472.CAN-08-1212.
21. Watson GE, Lorimore SA, Macdonald DA, Wright EG. Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Res. 2000;60:5608-11.
22. Morgan WF, Hartmann A, Limoli CL, Nagar S, Ponnaiya B. Bystander effects in radiation-induced genomic instability. Mutat Res. 2002;504(1-2):91-100.
23. Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res. 2003;159:581-96.
24. Lorimore SA, Chrystal JA, Robinson JI, Coates PJ, Wright EG. Chromosomal instability in unirradiated hemaopoietic cells induced by macrophages exposed in vivo to ionizing radiation. Cancer Res. 2008;68:8122-6. doi: 10.1158/0008-5472.CAN-08-0698.
25. Pant GS, Kamada N. Chromosome aberrations in normal leukocytes induced by the plasma of exposed individuals. Hiroshima J Med Sci. 1977;26:149-54.
26. Emerit I. Transferable clastogenic activity in plasma from persons exposed as salvage personnel of the Chernobyl reactor. J Cancer Res Clin Oncol. 1994;120:558-61.
27. Emerit I, Quastel M, Goldsmith J, Merkin L, Levy A, Cernjavski L, et al. Clastogenic factors in the plasma of children exposed at Chernobyl. Mutat Res. 1997;373(1):47-54.
28. Maznik NA, Vinnikov VA, Sypko TS, et al. [Study of the bystander effect in model experiments using in vivo irradiated plasma]. In: VI Congress on radiation research: abstracts. Moscow; 2010. Vol. 1. p. 66. Russian.
29. Yermakov AV, Veiko NN, Moiseeva OS, et al. [The bystander effect is a transposition of chromosome loci induced by adaptive doses of ionizing radiation]. In: Genetic implications of emergency radiation situations: Proceedings of the 3rd International. conf. Moscow; 2005. p. 43–4. Russian.
30. Vorobtsova IYe, Kolesnikova IS. [Investigation of radiation-induced “bystander effect” in a joint culture of lymphocytes of people of different sexes]. Radiatsionnaia biologiia, radioecologiia / Rossiiskaia akademiia nauk. 2007;47(6):645-9. Russian.
31. Vasilenko OP, Pronina OV, Rushkovsky SR. [The bystander effect under the joint cultivation of yeast with human peripheral blood lymphocytes]. In: Materials of the International conf. "Radiation and Ecosystems". Gostomel; 2008. p. 263-7. Russian.
32. Vasylenko OP, Pronina OV, Rushkovsky SR. Bystander effect in human lymphocytes incubated with irradiated mitochondrial DNA deficient yeast cells. Radioprotection. 2012;46(6):S555-9. DOI: https://doi.org/10.1051/radiopro/20116908s.
33. World Health Organization. Guidelines for study of genetic effects in human populations. Enviromental health criteria 46-WHO. Geneva: WHO; 1985. 126 p.
34. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. Vienna : International Atomic Energy Agency; 2011. 229 p.
35. Salomaa S. The scientific bases of radiation protection. Non-targeted effects of ionising radiation – Implications for radiation protection [Internet]. URL: https://www.osti.gov/etdeweb/servlets/purl/20854826 (last accessed 14.05.2019).
36. Wright ÅG. Manifestations and mechanisms of non-targeted effects of ionizing radiation. Mutat Res. 2010;687(1-2):28-33.
37. Wright Å. Mechanisms of non-targeted effects [Internet]. Available from: https://www.note-ip.org/Meetings_and_events/ NOTE_Workshops. (last accessed 14.06.2010).
38. Mothersill CE, Seymour CB. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat Biol. 1997;71:421-7.
39. Vines AM, Lyng FM, McClean B, Seymour C, Mothersill CE. Bystander signal production and response are independent processes which are cell line dependent. Int J Radiat Biol. 2008;84:83-90. DOI: https://doi.org/10.1080/09553000701797062.
40. Cali B, Ceolin S, Ceriani F, Bortolozzi M, Agnellini AH, Zorzi V, et al. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury. Oncotarget. 2015;6:10161-74. doi: 10.18632/oncotarget.3553.
41. Azzam EI, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to nonirradiated cells. Proc Natl Acad Sci. USA. 2001;98:473-8.
42. De Toledo SM, Buonanno M, Harris AL, Azzam EI. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells. Int J Radiat Biol. 2017;93(10):1182-94. doi: 10.1080/09553002.2017.1334980.
43. Facoetti A, Ballarini F, Cherubini R. Gamma ray-induced bystander effect in tumour glioblastoma cells: a specific study on cell survival, cytokine release and cytokine receptors. Radiat Prot Dosimetry. 2006;122(1–4):271-4. DOI: https://doi.org/10.1093/rpd/ncl431.
44. Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiation: Radiation-induced genomic instability and bystander effects in vitro. 2003. Radiat Res. 2012;178(5):AV223-36.
45. Mothersill C, Seymour CB. Cell-cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: Evidence for release during irradiation of a signal controlling survival into the medium. Radiat Res. 1998;149:256-62.
46. Lehnert BE, Goodwin EH. Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Res. 1997;57:2164-71.
47. Kashino G, Prise KM, Suzuki K, Matsuda N, Kodama S, Suzuki M, et al. Effective suppression of bystander effects by DMSO treatment of irradiated CHO cells. J Radiat Res. 2007;48:327-33. DOI: https://doi.org/10.1269/jrr.07008.
48. Chen S, Zhao Y, Zhao G, Han W, Bao L, Yu KN, et al. Up-regulation of ROS by mitochondria-dependent bystander signaling contributes to genotoxicity of bystander effects. Mutat Res. 2009;666:68-73. DOI: https://doi.org/10.1016/j.mrfmmm.2009.04.006.
49. Lyng FM, Howe OL, McClean B. Reactive oxygen species-induced release of signalling factors in irradiated cells triggers membrane signalling and calcium influx in bystander cells. Int J Radiat Biol. 2011;87:683-95. DOI: https://doi.org/10.3109/09553002.2010.549533.
50. Mittra I, Khare NK, Raghuram GV, Chaubal R, Khambatti F, Gupta D, et al. Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. J Biosci. 2015;40(1):91-111. doi: 10.1007/s12038-015-9508-6.
51. Mittra I, Samant U, Sharma S, Raghuram GV, Saha T, Tidke P, et al. Cell-free chromatin from dying cancer cells integrate into genomes of bystander healthy cells to induce DNA damage and inflammation. Cell Death Discov. 2017;3:17015. doi: 10.1038/cddiscovery.2017.15.
52. Kirolikar S, Prasannan P, Raghuram GV, Pancholi N, Saha T, Tidke P, et al. Prevention of radiation-induced bystander effects by agents that inactivate cell-free chromatin released from irradiated dying cells. Cell Death Disease. 2018;9:1142. DOI: https://doi.org/10.1038/s41419-018-1181-x.
53. Yermakov AV, Kostiuk SV, Yegolina NA, Kalashnikova EA, Kokarovtseva SN, Malinovskaya EM, et al. [Stress signaling between human lymphocytes after induction of bystander effect by exposure to ionizing radiation in adaptive doses]. Radiatsionnaia biologiia, radioecologiia / Rossiiskaia akademiia nauk. 2007;47(6):650-6. Russian.
54. Yermakov AV, Kon'kova MS, Kostiuk SV, Ershova E, Egolina NA, Veiko N. [Extracellular DNA fragments from culture medium of low-dose irradiated human lymphocyte trigger instigating of the oxidative stress and the adaptive response in non-irradiated bystander lymphocytes]. Radiatsionnaia biologiia, radioecologiia / Rossiiskaia akademiia nauk. 2008;48(5):553-64. Russian.
55. Yermakov AV, Kostiuk SV, Konkova MS. [Extracellular DNA of irradiated cells is a factor that induces the bystander effect at the action of low doses of ionizing radiation]. In: VI Congress on Radiation Research. Abstracts. Moscow; 2010. Vol. 1. p. 26. Russian.
56. Koturbash I, Rudo RE, Hendricks CA, Loree J., Thibault B., Kutanzi K., et al. Irradiation induces DNA damage and modulates epigenetic effectors in distant bystandar tissue in vivo. Onkogene. 2006;25:4267-75. https://doi.org/10.1038/sj.onc.1209467.
57. Tamminga J, Koturbash I, Baker M, Kutanzi K, Kathiria P, Pogribny IP, et al. Paternal cranial irradiation induces distant bystander DNA damage in the germline and leads to epigenetic alterations in the offspring. Cell Cycle. 2008;7(9):1238-45. DOI: https://doi.org/10.4161/cc.7.9.5806.
58. Brooks AL. Evidence for 'bystander effects' in vivo. Hum Exp Toxicol. 2004;23(2):67-70. DOI: https://doi.org/10.1191/0960327104ht419oa.
59. Ventura J, Lobachevsky PN, Palazzolo JS, Forrester H, Haynes N M, Ivashkevich A, et al. Localized synchrotron irradiation of mouse skin induces persistent systemic genotoxic and immune responses. Cancer Res. 2017;77(22):6389-99. doi: 10.1158/0008-5472.CAN-17-1066.
60. Stephan G. [Chromosomal aberrations in peripheral]. In: Genetic implications of emergency radiation situations: Materials III International. conf. Moscow; 2005. p. 6. Russian.
61. Stephan G, Kampen WU, No?ke D, Roos H. Chromosomal aberrations in peripheral lymphocytes of patients treated with radium-224 for ankylosing spondylitis. Radiat Environ Biophys. 2005;44:23-8. DOI: https://doi.org/10.1007/s00411-005-0275-x.
62. Najafi M, Fardid R, Hadadi Gh, Fardid M. The mechanisms of radiation-induced bystander effect. J. Biomed Phys Eng. 2014;4(4)163-72.
63. Liu SZ, Jin SZ, Liu XD. Radiation-induced bystander effect in immune response. Biomed Environ. Sci. 2004;17(1):40-6.
64. Moore MA. Cytokine and chemokine networks influencing stem cell proliferation, differentiation and marrow homing. J Cell Biochem Suppl. 2002;38:29-38.
65. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 2011;7(5):651-8. doi:10.7150/ijbs.7.651.
66. Calveley VL, Khan MA, Yeung IW, Vandyk J, Hill RP. Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. Int J Radiat Biol. 2005;81(12):887-99. DOI: https://doi.org/10.1080/09553000600568002.
67. Sprung CN, Ivashkevich A, Forrester HB, Redon CE, Georgakilas A, Martin OA. Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett. 2015;356(1):72-81. doi: 10.1016/j.canlet.2013.09.008.
68. Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, et al. Mechanism of radiation-induced bystander effects: a unifying model. J. Pharm. Pharmacol. 2008;60(8):943-50. doi: 10.1211/jpp.60.8.0001.
69. Rastogi S, Boylan M, Wright EG, Coates PJ. Interactions of apoptotic cells with macrophages in radiation-induced bystander signaling. Radiat Res. 2013;179):135-45. https://doi.org/10.1667/RR2969.1.
70. Mosse IB, Morozyk PM. [Radio-induced "baystender" effect and its biological meaning]. Scientific works. Technological safety. 2010;126(139):37-41. Russian.
71. Konopacka M, Rzeszowska-Wolny J. The bystander effect-induced formation of micronucleated cells is inhibited by antioxidants, but the parallel induction of apoptosis and loss of viability are not affected. Mutat Res. 2006;593(1-2):32-8. DOI: https://doi.org/10.1016/j.mrfmmm.2005.06.017.
72. Konopacka M. The influence of antioxidant vitamins on the radiation-induced bystander effect in normal human lymphocytes. Modern problems of radiation research. In: 35th Annual Conference of the European Society for Radiological Research. Ñonference proceedings. Kyiv; 2007. p. 94-101.
73. Koyama S, Kodama S, Suzuki K, Matsumoto T, Miyazaki T, Watanabe M. Radiation-induced long-lived radicals which cause mutation and transformation. Mutat Res. 1998;421(1):45-54. DOI: https://doi.org/10.1016/S0027-5107(98)00153-5.
74. Zhou H, Ivanov VN, Lien YC, Davidson M, Hei TK. Mitochondrial function and nuclear factor-kappaB-mediated signaling in radiation-induced bystander effects. Cancer Res. 2008;68:2233-40.
75. Chen S, Zhao Y, Han W, Zhao G, Zhu L, Wang J, et al. Mitochondria-dependent signalling pathway are involved in the early process of radiation-induced bystander effects. Br J Cancer. 2008;98(11):1839-44. doi: 10.1038/sj.bjc.6604358. PubMed PMID: 18475304.
76. Yang G, Wu L, Chen S, Zhu L, Huang P, Tong L, et al. Mitochondrial dysfunction resulting from loss of cytochrome Ñ impairs radiation-induced bystander effect. Br J Cancer. 2009;100(12):1912-6. doi: 10.1038/sj.bjc.6605087.
77. Ilnytskyy Y, Kovalchuk O. Non-targeted radiation effects-an epigenetic connection. Mutat Res. 2011;714(1-2):113-25. doi:10.1016/j.mrfmmm.2011.06.014.
78. Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1(2):76-80.
79. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22(22):4632-42. DOI: https://doi.org/10.1016/B978-0-12-380866-0.60002-2.
80. Kalinich JF, Catravas GN, Snyder SL. The effect of gamma radiation on DNA methylation. Radiat Res. 1989;117(2):185-97.
81. Sedelnikova OA, Nakamura A, Kovalchuk O, Koturbash I, Mitchell SA, Marino SA, et al. DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res. 2007;67(9):4295-302. DOI: 10.1158/0008-5472.CAN-06-4442.
82. Zaratiegui M, Irvine DV, Martienssen RA. Noncoding RNAs and gene silencing. Cell. 2007;128(4):763-76. DOI: https://doi.org/10.1016/j.cell.2007.02.016.
83. Xu S, Wang J, Ding N, Hu W, Zhang X, Wang B, et al. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol. 2015;12(12):1355-63. DOI: https://doi.org/10.1080/15476286.2015.1100795.
84. Koturbash I, Boyko A, Rodriguez-Juarez R, McDonald RJ, Tryndyak VP, Kovalchuk I, et al. Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis. 2007;28(8):1831-8. DOI: https://doi.org/10.1093/carcin/bgm053.
85. Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ Mol Mutagen. 2009;50(2):105-13. DOI: https://doi.org/10.1002/em.20440.
86. Filkowski JN, Ilnytskyy Y, Tamminga J, Koturbash I, Golubov A, Bagnyukova T, et al. Hypomethylation and genome instability in the germline of exposed parents and their progeny is associated with altered miRNA expression. Carcinogenesis. 2010;31(6):1110-5. DOI: https://doi.org/10.1093/carcin/bgp300.
87. Ovsyannikova LM, Chumak AA, Alekhina SM, et al. [The state of oxidative processes in liquidators at various periods after the Chornobyl accident]. In: Proceed. report of the VI Congress on Radiation Research; 2010 Oct 25–28; Moscow. Moscow; 2010. Vol. 1. p. 118. Russian.
88. Ovsyannikova L, Chumak A, Nosach O, et al. Antioxidant system, oxidative modification of proteins and lipids (Chapter 14). In: Serdiuk A, Bebeshko V, Bazyka D, Yamashita S. Health effects of the Chornobyl Accident – a Quarter of Century Aftermath. Kyiv: DIA; 2011. p. 419-32.
89. Marozik P, Mothersill C, Seymour C, Mosse I, Melnov S. Bystander effect induced by serum from survivors of the Chernobyl accident. Exp Hematol. 2007;35(4 Suppl 1):55-63.
90. Lorimore SA, Kadhim MA, Pocock DA, Papworth D, Stevens DL, Goodhead DT, et al. Chromosomal instability in the descendants of unirradiated surviving cells after alpha-particle irradiation. Proc Natl Acad Sci USA. 1998;95(10):5730-3. DOI: https://doi.org/10.1073/pnas.95.10.5730.
91. Osipov NA, Lizunova EYu, Vorob'eva NYu, Anchishkina NA. [The role of the bystander effect in the formation of long-term effects of irradiation in the cell culture of the CHO-K1 line]. In: VI Congress on Radiation Research: Abstracts. Moscow; 2010. Vol. 1. p. 39. Russian.
92. Autsavapromporn N, Plante I, Liu C, Konishi T, Usami N, Funayama T, et al. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk. Int J Radiat Biol. 2015;91(1):62-70. DOI: https://doi.org/10.3109/09553002.2014.950715.
93. Autsavapromporn N, Liu C, Konishi T. Impact of co-culturing with fractionated carbon-ion-irradiated cancer cells on bystander normal cells and their progeny. Radiat Res. 2017;188(3):335-41. DOI: https://doi.org/10.1667/RR14773.1.
94. Widel M, Przybyszewski W, Rzeszowska-Wolny J. [Radiation-induced bystander effect: the important part of ionizing radiation response; potential clinical implications]. Postepy Hig Med Dosw. 2009;63:88-94. Polish.
95. Mothersill C, Seymour C. Radiation-induced bystander effects – implications for cancer. Nat Rev Cancer. 2004;4(2):158-64. DOI: https://doi.org/10.1038/nrc1277.
96. Brady D, O’Sullivan JM, Prise KM. What is the role of the bystander response in radionuclide therapies? Front Oncol. 2013;3:215. DOI: https://doi.org/10.3389/fonc.2013.00215.
97. Georgakilas AG. Bystander and non-targeted effects: a unifying model from ionizing radiation to cancer. Cancer Lett. 2015;356(1):3–4. DOI: https://doi.org/10.1016/j.canlet.2014.03.032.
98. Martin OA, Yin X, Forrester HB, Sprung CN, Martin RF et al. Potential strategies to ameliorate risk of radiotherapy-induced second malignant neoplasms. Semin Cancer Biol. 2016;37-38:65-76. DOI: https://doi.org/10.1016/j.semcancer.2015.12.003.
99. Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, et al. Mechanisms of radiation bystander and non-targeted effects: implications to radiation carcinogenesis and radiotherapy. Curr Radiopharm. 2018;11(1):34-45. DOI : 10.2174/1874471011666171229123130.
100. Wang CK. The progress of radiobiological models in modern radiotherapy with emphasis on the uncertainty issue. Mutat Res. 2010;704(1-3):175-81. DOI: https://doi.org/10.1016/j.mrrev.2010.02.001.
101. Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, et al. Non-targeted effects of ionising radiation – implications for low dose risk. Mutat Res. 2013;752(2):84-98. DOI: https://doi.org/10.1016/j.mrrev.2012.12.001.
102. Belyakov OV. Non-targeted effects of ionising radiation. In: Belyakov O. V., editor. Non-targeted effects of ionising radiation. Proceedings of the RISC-RAD specialised training course “Non-targeted effects of ionising radiation”. Helsinki; 2005. p. 13-46.
103. Liu Z, Mothersill CE, McNeill FE, Lyng FM, Byun SH, Seymour CB, et al. A dose threshold for a medium transfer bystander effect for a human skin cell line. Radiat Res. 2006;166(1):19-23. DOI: https://doi.org/10.1667/RR3580.1.
104. Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009;9:351-60. DOI: https://doi.org/10.1038/nrc2603.
105. Sowa MB, Goetz W, Baulch JE, Pyles DN, Dziegielewski J, Yovino S, et al. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells. Int J Radiat Biol. 2010;86(2):102-13. DOI: https://doi.org/10.3109/09553000903419957.
106. Kleinerman RA, Boice JD, Storm HH, Sparen P, Andersen A, Pukkala E, et al. Second primary cancer after treatment for cervical cancer. An international cancer registries study. Cancer. 1995;76(3):442-52.
107. Dent SF, Klaassen D, Pater JL, Zee B, Whitehead M. Second primary malignancies following the treatment of early stage ovarian cancer: Update of a study by the National Cancer Institute of Canada-Clinical Trials Group (NCIC-CTG). Ann Oncol. 2000;11(1):65-8. DOI: https://doi.org/10.1023/A:1008356806417.
108. Birgisson H, Pahlman L, Gunnarsson U, Glimelius B. Occurrence of second cancers in patients treated with radiotherapy for rectal cancer. J Clin Oncol. 2005;23(25):6126-31. DOI: 10.1200/JCO.2005.02.543.
109. Brenner DJ, Curtis RE, Hall EJ, Ron E. Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer. 2000;88(2):398-406.
110. Mart?n A, Mart?n M, Linan O, Alvarenga F, Lopez M, Fernandez L, et al. Bystander effects and radiotherapy. Rep Prac Oncol Radiother. 2015;20(1):12-21. DOI: https://doi.org/10.1016/j.rpor.2014.08.004.
111. UNSCEAR. Biological mechanisms of radiation actions at low doses. New York: United Nations; 2012.
112. Chen S, Zhao Y, Han W, Chiu SK, Zhu L, Wu L, Yu KN. Rescue effects in radiobiology: Unirradiated bystander cells assist irradiated cells through intercellular signal feedback. Mutat Res. 2011;706:59-64. DOI: https://doi.org/10.1016/j.mrfmmm.2010.10.011.
113. Desai S, Kobayashi A, Konishi T, Oikawa M, Pandey BN. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation. Mutat Res. 2014;763-764:39-44. DOI: https://doi.org/10.1016/j.mrfmmm.2014.03.004.
114. He M, Dong C, Xie Y, Li J, Yuan D, Bai Y, Shao C. Reciprocal bystander effect between ?-irradiated macrophage and hepatocyte is mediated by cAMP through a membrane signaling pathway. Mutat Res. 2014;763-764:1-9. DOI: https://doi.org/10.1016/j.mrfmmm.2014.03.001.
115. Lam RKK, Fung YK, Han W, Yu KN. Rescue effects: irradiated cells helped by unirradiated bystander cells. Int J Mol Sci. 2015;16:2591-609. DOI: https://doi.org/10.3390/ijms16022591.
116. Shemetun EV, Pylinskaya MA. [Modeling of radiation-induced "bystander effect" in the culture of human peripheral blood lymphocytes]. In: Genetic implications of emergency radiation situations: Materials III International. Conf.; 2005 Oct 4-7; Dubna. Moscow; 2005. p. 136-8. Russian.
117. Shemetun OV, Pilins’ka MA. [Radiation-induced “bystander” effect]. Cytol Genet. 2007;41(4)251-5. Russian.
118. Shemetun OV, Talan OA, Pilinskaya MA. Radioinduced bystander effect revealed in vitro and in vivo in mixed human lymphocytes culture. Radioprotection. 2008;43(5 Art. 075). (36th annual meeting of the European Radiation Research Society). DOI: https://doi.org/10.1051/radiopro:2008531.
119. Shemetun OV, Talan OA. [Induction of the bystander effect by blood lymphocyte of liquidators of the Chernobyl accident irradiated in low doses]. Factors of experimental evolution of organisms. 2009;7:421-5. Ukrainian.
120. Shemetun OV. [Induction of the bystander effect in human somatic cells by X-ray irradiation in vitro at low and high doses]. Reports of the National Academy of Sciences of Ukraine. 2011;(10):163-7. Ukrainian.
121. Shemetun EV, Talan OA, Pilinska MA. [Cytogenetic features of induction and persistence of radiation-induced bystander effect in human lymphocytes]. Cytology and genetics. 2014;48(4):51-8. Ukrainian.
122. Shemetun OV, Talan OO, Demchenko OM, Pilinska MA. [Development of radiation-induced bystander effect in the somatic cells of persons from different age groups]. Probl Radiac Med Radiobiol. 2018;23:499-509. Ukrainian.