1. Stepanova E, Kolpakov I., Kondrashova V, Vdovenko V. Early and late consequences in children evacuated from the 30-km zone and residents of areas contaminated by radiation. Serdiuk A, Bebeshko V, Bazyka D, Yamashita S, editors. Health effects of the Chornobyl accident – a quarter of century aftermath. Kyiv: DIA; 2011, p. 553-63.
2. [Thirty years of the Chornobyl disaster: radiological and medical implications: National Report of Ukraine]. Kyiv; 2016. 177 p. Ukrainian.
3. Bufler P, Gross M, Uhlig HH. Recurrent abdominal pain in childhood. Dtsch Arztebl Int. 2011 Apr;108(17):295-304.
4. Kolosova TA, Belousova TE, Kubysheva NI. [New diagnostic approaches to assess the effectiveness of physiotherapy treatment in the medical rehabilitation of children with chronic gastroduodenitis]. Meditsinskiy Al'manakh, 2014;1(31):52-5. Russian.
5. Wong CH, van der Kogel AG. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv. 2004;4(5):273-84.
6. Gourmelon P, Marquette C, Agay D, Mathieu J, Clarencon D. Involvement of the central nervous system in radiation-induced multi-organ dysfunction and/or failure. Br J Radiol. 2005;Suppl 27:62–8.
7. Loganovsky KN. [Whether low doses of ionizing radiation affect the human brain?] Ukrainian Medical Journal. 2009;3(71);56-9. Russian.
8. Nowakowski RS, Hayes NL. Radiation, retardation and the developing brain: time is the crucial variable. Acta Paediatr. 2008 May;97(5):527-31.
9. Marazziti D, Pichchini A, Muchchi F, Baroni S, Lohanovsky K, Lohanovskaja T. Ionizing radiation: brain effects and related neuropsychiatric manifestations. Probl Radiac Med Radiobiol. 2016;21: 64-90.
10. Loganovsky KN. Brain damage following exposure to low doses of ionizing radiation as s result of the Chernobyl accident. Clin Neuropsychiatry. 2012;9(5):203-4.
11. Bazyka DA, Ilyenko M, Loganovsky KN, Benotman MA, Chumak SA. TERF1 and TERF2 down regulate telomere length in cognitive deficit at the late period after low-dose exposure. Probl Radiac Med Radiobiol. 2014;19:170–85.
12. Lohanovsky KM, Bomko MO, Abramenko IV, Kuts KV, Bilous NI, Masyuk SV, et al. Neuropsychobiological mechanisms of affective and cognitive disorders in the Chornobyl clean-up workers taking into account the specific gene polymorphisms. Probl Radiac Med Radiobiol. 2018;23:373-409.
13. Petrukhin AS. [Pediatric neurology: in 2 volumes]. Moscow: GEOTAR-Media; 2012. 815 p. Russian.
14. Bogomolov V. [Testing children]. Rostov n / Donu: Fenix; 2004. 352 p. Russian.
15. Raven J. The Raven’s progressive matrices: change and stability over culture and time.Cognitive psychology. 2000;41(1):1-48.
16. Davydov DG, Chmykhova YeV. Application test standard progressive matrix Raven in time limit mode. Voprosy psikhologii. 2016;4:129-39. Russian.
17. Yasyukova LA. [Optimization of training and development of children with MMD. Diagnosis and compensation of minimal brain dysfunctions] [metodical recommendations]. Saint Petersburg: IMATON, 1997. 80 s. Russian.
18. Chaban OO, Khaustova OO, editors [Practical psychosomatics: diagnostic scales: navchal’nyy posibnyk]. Kyiv: VNTU; 2018. 108 p. Ukrainian.
19. Veyn AM, editor. [Vegetative conditions. Clinic diagnosis treatment]. Moscow: Meditsinskoye informatsionnoye agentstvo; 2003. 752 p. Russian.
20. Korynev MM, Kashina-Yarmak VL, Borysko HO, Koval?ova VI, Demenkova IH, Molyeva VI, Kostenko TP. (compilers). [Dispensary supervision of the offspring of parents who were exposed to radiation in childhood as a result of the Chernobyl accident] [metodical recommendations]. NAMSU, Ministry of Health of Ukraine, Ukrainsky tsentr naukovo-medychnoi informatsii ta patentno-litsenziinoi roboty; 2012. 23 s. Ukrainian.
21. Stepanova YeI, Kolpakov IYe, Kondrashova VH, Vdovenko VYU, Lytvynets’ OM, Skvars’ka OO, Zyhalo VM. [Polymorphism of NO synthase genes as a risk factor in the development of endothelial dysfunction, functional disorders of the respiratory system and the autonomic nervous system in children living in radioactively contaminated territories]. Zbirnyk naukovykh prats’ spivrobitnykiv NMAPO im. P.L. Shupyka. 2015;24(3):354-63. Ukrainian.
22. Lisukha LM. Influence of intermittent normobaric hypoxia on vegetative homeostasis and hemodynamic parameters in children aged 6 to 11 years living in radioactively contaminated territories. Sovremennaya pediatriya. 2015;7(71):66-70. Ukrainian.
23. Lisukha LM, Stepanova YeI, Kolpakov IYe, Podrushnyak AYe. Electrolyte content in saliva of children with deviation in vegetative status residing at radioactively contaminated territories of Ukraine after application of intermittent normobaric hypoxia. Probl Radiac Med Radiobiol. 2018;23:359-72.
24. Gant YeYe. [Features of the productivity of cognitive functions in children of secondary school age in a competitive and post competitive activities]. Pedagogika, psikhologiya i med.-biol. problemy. 2011;6:17-21. Russian.
25. Zotova SA. [The role of the radiation factor in the formation of neuropsychiatric disorders in children born in the families of the liquidators of the Chernobyl nuclear power plant accident and the rationale for the tactics of diagnostic and therapeutic measures] [dissertation]. Moskva: Moskovskiy Nauchno-issledovatel'skiy institut pediatrii i detskoy khirurgii; 2007. 178 p. Russian.
26. Rupprecht R, Moller HJ. Diagnosis and treatment of panic disorder. MMW Fortschr Med. 2014;146 (42):45-6.
27. Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, et al. MRI-based measuremement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry. 1995;152(7):973-81.
28. Lohanovska TK. [Mental disorders in children exposed to pre-natal irradiation as a result of the Chornobyl accident] [dysertatsiya]. Kyiv: Research Center for Radiation Medicine of the Academy of Medical Sciences of Ukraine; 2005. 253 p. Ukrainian.
29. Kildiyarova RR, Lobanov YuF. [Visual child gastroenterology and hematology: a training manual]. Moscow: GEOTAR-Media; 2013. 124 p. Russian.
30. Zaprudnov AM, Grigoryev KI, Kharitonova LA, Bogomaz LV, Yudina TM. [Problems and prospects of modern children's gastroenterology]. Pediatriya. 2016;95(6):10-8. Russian.
31. Lityayeva LA. [The origins of the pathology of the gastrointestinal tract in children]. Detskiye infektsii. 2016;4:23-6. Russian.
32. Kirsteen N, Travagli RA. Central nervous system control of gastrointestinal motility secretion and modulation of gastrointestinal function. Compr Physiol. 2014 Oct: 4(4): 1339–68. DOI:10.1002/cphy.c130055.
33. Cervi AL, Lukewich MK, Lomax AE. Neural regulation of gastrointestinal inflammation: Role of the sympathetic nervous system. Auton Neurosci. 2014; 182:89–8. DOI: 10.1016/j.autneu.2013.12.003.
34. Gareau MG. Cognitive function and the microbiome. Int Rev Neurobio. 2016;131:227-46. DOI: https://doi.org/10.1016/bs.irn.2016.08.001
35. Foster JA, Lyte M, Mayer E, Cryan JF. Gut microbiota and brain function: an evolving field in neuroscience. Int J Neuropsychopharmacol. 2016;19(5). DOI: 10.1035/ijnp/pyvi14.
36. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanism and therapeutic potential. Adv Exper Med Biol. 2014;817:373-403. DOI: https://doi.org/10.1007/978-1-4939-0897-4_17.
37. Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology. 2016;150(6):1262-79. DOI: https://doi.org/10.1053/j.gastro.2016.02.032.