1. Zhuravlev VF. [Toxicology of radioactive substances]. Moscow: Energoatomizdat; 1990. 336 p. Russian.
2. Bazhenov VA, Buldakov LA, Vasylenko IYa. [Harmful chemicals. Radioactive substances]. Leningrad: Khimia; 1990. 464 p. Russian.
3. Iliin LA, editor. [Radioactive iodine in the problem of radiation safety]. Moscow: Atomizdat; 1972. P. 27-30. Russian.
4. Institute of Medicine (US) Committee on Thyroid Screening Related to I-131 Exposure; National Research Council (US) Committee on Exposure of the American People to I-131 from the Nevada Atomic Bomb Tests. Exposure of the american people to Iodine-131 from Nevada nuclear-bomb tests. Review of the National Cancer Institute Report and Public Health Implications. Washington: National Academy Press; 1999. 272 p.
5. Likhtarov I, Kovgan L, Vavilov S, Chepurny M, Bouville A, Luckyanov N, et al. Post-Chornobyl thyroid cancers in Ukraine. Report 1: estimation of thyroid doses. Radiat Res. 2005;163(2):125-36.
6. Likhtarev I, Bouville A, Kovgan L, Luckyanov N, Voilleque P, Chepurny M. Questionnaire- and measurement-based individual thyroid doses in Ukraine resulting from the Chornobyl nuclear reactor accident. Radiat Res. 2006;166(1 Pt 2):271-86. https://doi.org/10.1667/RR3545.1.
7. Lebel LS, Dickson RS, Glowa GA. Radioiodine in the atmosphere after the Fukushima Dai-ichi nuclear accident. J Environ Radioact. 2016;151(Pt 1):82-93. doi: 10.1016/j.jenvrad.2015.06.001.
8. [The accident at the Chernobyl nuclear power plant and its consequences]. Moscow: State Atomic Energy Committee of the USSR; 1986. Russian.
9. Devell L, Guntay S, Powers DA. The Chernobyl reactor accident source term: Development of a consensus view. NEA/CSNI/R, 1996. Vol. (95)24. 29 p.
10. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Sources and effects of ionizing radiation. Sources. United Nations Scientific Committee on the Effects of Atomic Radiation. New York: United Nations, 2000. Vol. I. Annex J. Exposures and effects of the Chernobyl accident. p. 451-566 URL: http://www.unscear.org/unscear/en/chernobyl.html
11. Likhtarev IA, Kovgan LM, Chumak VV, Vasylenko VV, Tsygankov MYa, et al. [Dose of irradiation]. In: Serdyuk AM, Bebeshko VG, Bazyka DA, editors. [Health consequences of the Chornobyl catastrophe: 1986–2011]. Ternopil: TDMU; 2011. p. 35–65. Ukrainian.
12. Kawai M, Yoshizawa N, Suzuki G. 131I dose estimation from intake of tap water in the early phase after Fukushima Daiichi nuclear power plant accident. Radiat. Prot. Dosimetry. 2018;179(1):43-8. doi: 10.1093/rpd/ncx208.
13. International Commission on Radiological Protection. Agedependent doses to members of the public from intake of radionuclides: part 2. Ingestion dose coefficients. Oxford: ICRP; ICRP Publication 67. Ann. ICRP. 1993;23(3-4).
14. Iliina DA, Moskalenko YuI. [Distribution, exchange kinetics and biological effect of radioactive iodine isotopes]. Moscow: Meditsina; 1970. 130 p. Russian.
15. International Commission on Radiological Protection. Doses to infants from radionuclides ingested in mothers’ milk. Elsevier: ICRP; ICRP Publication 95. Ann. ICRP. 2004;34(3–4).
16. Simon SL, Luckyanov N, Bouville A, VanMiddlesworth L, Weinstock RM. Transfer of I-131 into human breast milk and transfer coefficients for radiological dose assessments. Health Phys. 2002;82:796-806.
17. ICRP Publication 88. Doses to the embryo fetus from intake radionuclides by the mother. Amsterdam: Elsevier (Pergamon). Ann. ICRP. 2001;31/1–3. 518 p.
18. Likhtarov I, Kovgan L, Chepurny M, Ivanova O, Boyko Z, Ratia G, et al. Estimation of the thyroid doses for Ukrainian children exposed in utero after the Chornobyl accident. Health Phys. 2011;100(6):583-93. DOI: 10.1097/HP.0b013e3181ff391a.
19. Dedov VI, Dedov II, Stepanenko VF. [Radiation endocrinology]. Moscow: Meditsina; 1993. 208 p. Russian.
20. Likhtarev IA, Chumak VV, Repin VS. Retrospective reconstruction of individual and collective external gamma-doses of population evacuated after the Chernobyl accident. Health Phys. 1994;66(6):10.
21. Repin VS. [Radiation-hygienic significance of sources and doses to the population in the 30-km zone after the Chernobyl accident (reconstruction problems, risk assessment)] [thesis of dissertation]. Kyiv; 1996. 31 p. Russian.
22. Repin VS, Nechaev SYu, Friesyuk MA, et al. [Assessment of the effect of pregnancy on the formation of doses on the organs and tissues of the fetus. Development of parameters of the model of irradiation of the fetus in utero caused by the accident at the Chernobyl Nuclear Power Plant]. In: Science. Chornobyl-96: abstracts of scientific papers. conf. 1997 Feb 11-12; Kyiv, Ukraine. Kyiv; 1997. p. 157-8. Ukrainian.
23. Nyagu AI, Loganovsky KN, Loganovskaja TK, et al. Intelligence and brain damage in children acutely irradiated in utero as a result of the Chernobyl accident / KURRI-KR-79. In: Imanaka T, editor. Recent Research Activities about the Chernobyl NPP Accident in Belarus, Ukraine and Russia. Kyoto: Research Reactor Institute, Kyoto University; 2002. p. 202-30.
24. Nyagu AI, Loganovsky KN, Pott-Born R, et al. Effects of prenatal brain irradiation as a result of the Chernobyl accident. Int J Rad Med. 2004;6(1-4, Spec Iss):91-107.
25. Loganovska TK, Nechaev SYu. [Psychophysiological effects in prenatally infected children and adolescents as a result of the Chernobyl accident]. Medychnyi vsesvit. 2004;4(1):130-7. Ukrainian.
26. Loganovska TK. [Mental disorders in children who have undergone intrauterine irradiation as a result of the Chernobyl accident] [thesis of dissertation]. Kyiv: Research center for Radiation Medicine; 2005. 24 p. Ukrainian.
27. Loganovsky K, Loganovskaja T, Nechayev S, Antipchuk YY, Bomko MA. Disrupted development of dominant brain hemisphere following prenatal irradiation. J Neuropsychiatry Clin Neurosci. 2008;20:274-91. doi: 10.1176/appi.neuropsych.20.3.274.
28. Berkovski V. Radiation and Thyroid Cancer. Radioiodine biokinetics in the mother and fetus. Part 1. Pregnant woman. Publication No. EUR 18552EN of the European Commission. World Scientific Publishing; 1999a. p. 319-25.
29. Berkovski V. Radiation and Thyroid Cancer. Radioiodine biokinetics in the mother and fetus. Part 2. Fetus. Publication No. EUR 18552EN of the European Commission. World Scientific Publishing; 1999b. p. 327-32.
30. Likhtarov IA, Kovgan LM, Chepurny MI, Masiuk SV. Interpretation of results of radioiodine measurements in thyroid for residents of Ukraine (1986). Probl Radiac Med Radiobiol. 2015;20:185-203.
31. Talko VV, Loganovsky KM, Drozd IP, Tukalenko YeV, Loganovska TK, Nechayev SYu, et al. Cerebral impact of prenatal irradiation by 131I: an experimental model of clinical neuroradiobiological effects. Probl Radiac Med Radiobiol. 2017;22:238-69.
32. ICRP Publication 49 Developmental effects of irradiation on the brain of the embryo and fetus. – A report of a Task Group of Committee 1 of the International Commission on Radiological Protection, 1986. Oxford, New York, Toronto, Sydney, Frankfurt: Pergamon Press; 1986. 43 p.
33. ICRP Publication 90. Biological effects after prenatal irradiation (embryo and fetus). Amsterdam: Elsevier (Pergamon); 2003. 230 p.
34. Hatch M, Little MP, Brenner AV, Cahoon EK, Tereshchenko V, Chaikovska L, et al. Neonatal outcomes following exposure in utero to fallout from Chernobyl / Eur. J. Epidemiol. 2017;32(12):1075-88. DOI: https://doi.org/10.1007/s10654-017-0299-y.
35. Neta G, Hatch M, Kitahara CM, Ostroumova E, Bolshova EV, Tereschenko VP, et al. In utero exposure to iodine-131 from Chernobyl fallout and anthropometric characteristics in adolescence. Radiat. Res. 2014;181(3):293-301. DOI: https://doi.org/10.1667/RR13304.1.
36. Roesch WC, editor. US-Japan Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki. Final Report, Dosimetry System 1986 (DS86). Hiroshima: RERF, 1987.
37. Reassessment of the Atomic Bomb Radiation Dosimetry for Hiroshima and Nagasaki. Report of the Joint US-Japan Working Group, Dosimetry System 2002 (DS02) / ed. by R. W. Young, G. D. Kerr. Hiroshima : RERF, 2005.
38. Hatch M, Brenner AV, Cahoon EK, Drozdovitch V, Little MP, Bogdanova T, et al. Thyroid cancer and benign nodules after exposure in utero to fallout from Chernobyl. J Clin Endocrinol Metab. 2019;104(1):41-8. DOI: https://doi.org/10.1210/jc.2018-00847.
39. Otake M, Schull WJ, Lee S. Threshold for radiation-related severe mental retardation in prenatally exposed A-bomb survivors: a re-analysis. Int J Radiat Biol. 1996;70(6):755-63.
40. Otake M, Schull WJ. Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. Int J Radiat Biol. 1998;74(2):159-71.
41. Imamura Y, Nakane Y, Ohta Y, Kondo H. Lifetime prevalence of schizophrenia among individuals prenatally exposed to atomic bomb radiation in Nagasaki City. Acta Psychiatr. Scand. 1999;100(5):344-9.
42. Gross R, Hamid H, Harlap S, Malaspina D. Prenatal x-ray exposure may increase risk of schizophrenia: Results from the Jerusalem perinatal cohort schizophrenia study. Int J Mental Health. 2018;47(3):236-40. DOI: https://doi.org/10.1080/00207411.2017.1308293
43. Loganovsky K, Loganovskaja T, Nechayev S, et al. Prenatal Irradiation of the Brain. In: Serdiuk A, Bebeshko V, Bazyka D, Yamashita S, editors. Health effects of the Chornobyl accident – a quarter of centuryaftermath. Chapter 21. Medical consequences of the Chornobyl accident in exposed in childhood. Kyiv: DIA; 2011. p. 573-81.
44. Loganovsky K, Bomko M, Chumak S, et al. Mental health and neuropsychiatric effects. In: Bazyka D, Sushko V, Chumak A, Chumak V, Yanovych L, editors. Health effects of Chornobyl accident ?thirty yearsaftermath. Kyiv: DIA; 2016. p. 320-81. URL: http://nrcrm.gov.ua/downloads/2017/monograph_last.pdf
45. Loganovsky K. N., Loganovskaya T. K. Responses to children’s mental health needs following the Chernobyl disaster. Springer Publishing «Responses to Children’s Mental Health Needs after Major Disasters, an International Perspective». Columbia University Medical Center/New York State Psychiatric Institute, USA. Springer Nature Switzerland AG; 2019. 29 p. (in press)
46. World Health Organization; Souchkevich GN, Tsyb AF, editors. Health consequences of the Chernobyl accident. Results of the IPHECA pilot projects and related national programmes. Geneva: World Health Organization; 1996. 520 p.
47. Kozlova IA, Nyagu AI, Korolev VD. [Effect of radiation on the mental development of children]. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 1999;99(8):12-5. Russian.
48. Liaginskaia AM, Tereshchenko IYa, Vasilenko IYa. [Radiobiological aspects of thyroid damage in children after the accident at the Chernobyl nuclear power plant (results and prospects of research)]. In: [Chernobyl disaster and medical and psychological rehabilitation of the victims]. Minsk; 1992. p. 105-8. Russian.
49. Nyagu AI, Loganovsky KN, Loganovskaja TK. Psychophysiologic aftereffects of prenatal irradiation. Int J Psychophysiol. 1998;30(3):303-11. DOI: https://doi.org/10.1016/S0167-8760(98)00022-1.
50. Kolominsky Y, Igumnov S, Drozdovitch V. The psychological development of children from Belarus exposed in the prenatal period to radiation from the Chernobyl Atomic Power Plant. J Child Psychol Psychiatry. 1999;40(2):299-305. DOI: https://doi.org/10.1111/1469-7610.00444.
51. Igumnov SA. [A prospective study of the psychological development of children exposed to in utero ionizing radiation as a result of the Chernobyl accident] [thesis of dissertation]. Moscow; 1999. 38 p. Russian.
52. Igumnov S, Drozdovitch V. The intellectual development, mental and behavioural disorders in children from Belarus exposed in utero following the Chernobyl accident. Eur Psychiatry. 2000;15(4):244-53.
53. Igumnov SA, Drozdovitch V. [Bioelectric activity of the brain in prenatally irradiated children due to the accident at the Chernobyl nuclear power plant (a prospective study)]. Medical Radiology and Radiation Safety. 2002;(5):33-42. Russian.
54. Igumnov SA, Drozdovitch VV. Antenatal exposure following the Chernobyl accident: neuropsychiatric aspects. International Journal of Radiation Medicine. 2004;6(1-4):108-15.
55. Igumnov S. The brain bioelectric activity of the Belarusian persons irradiated in utero as a result of Chernobyl accident. Activitas Nervosa Superior Rediviva. 2009;51(1-2):55-60.
56. Igumnov SA, Orlov AL, Evseenko VV, Dokukina TV, Kasap VA, Kozmidiadi AO, et al. [Psychological and neurophysiological diagnostics of the mental state of antenatally irradiated individuals]. Medical and Biological Problems of Life Activity. 2011;(1):93-102. Russian.
57. Bazylchik SD, Drozd VM, Rainers Kh, Gavrilin Yu. [Intellectual development of children irradiated in utero and under the age of 1.5 years as a result of the Chernobyl accident]. Int. J. Rad. Med. 2001;3(1-2, Spec Iss):157-8. Russian.
58. Haiduk FM, Igumnov SA, Shalkevych VB. [Comprehensive assessment of the neuropsychic development of children exposed to radiation in the prenatal period as a result of the Chernobyl disaster]. Social and Clinical Psychiatry. 1994;4(1):45-9. Russian.
59. Ermolina LA, Sosiukalo OD, Sukhotina NK, et al. [The effect of low doses of radiation on the neuropsychic health of children (methodological approaches and preliminary data). Post 1]. Social and Clinical Psychiatry. 1994;4(1):37-43. Russian.
60. Ermolina LA, Sukhotina NK, Sosiukalo OD, et al. [The effect of low doses of radiation on the neuropsychic health of children (the radio-ontogenetic aspect of the problem). Post 2]. Social and Clinical Psychiatry. 1996;6(3):5-12. Russian.
61. Sukhotina NK, Ermolina LA, Sosiukalo OD, et al. [Neuropsychic health of children irradiated in utero as a result of the Chernobyl accident]. Social and Clinical Psychiatry. 2000;10(2):3-7. Russian.
62. Bromet E, Goldgaber D, Carlson G., et al. [Mental health of children 11 years after the Chernobyl disaster]. Journal of Ukrainian Psychiatrists Association. 1998;4(12):37-63. Russian.
63. Litcher L, Bromet EJ, Carlson G, Squires NK. School and neuropsychological performance of evacuated children in Kiev eleven years after the Chernobyl disaster. J Child Psychol Psychiatry. 2000;41:219-99. DOI: 10.1111/1469-7610.00613.
64. Bromet EJ, Goldgaber D, Carlson G, Panina N, Golovakha E, Gluzman SF, et al. Children’s well-being 11 years after the Chornobyl catastrophe. Arch Gen Psychiatry. 2000;57(6):563-71.
65. N Bar J., Reisfeld D., Tirosh E., Silman Z. Neurobehavioral and cognitive performances of children exposed to low-dose radiation in the Chernobyl accident: the Israeli Chernobyl Health Effects Study. Am J Epidemiol. 2004;160(5):453-9. DOI: 10.1093/aje/kwh231.
66. Bromet EJ, Taormina DP, Guey LT, Bijlsma JA, Gluzman SF, Havenaar JM, et al. Subjective health legacy of the Chornobyl accident: a comparative study of 19-year olds in Kyiv. BMC Public Health. 2009;9:417. DOI: https://doi.org/10.1186/1471-2458-9-417.
67. Taormina DP, Rozenblatt Sh, Guey LT, Gluzman SF, Carlson GA, Havenaar JM, et al. The Chornobyl accident and cognitive functioning: a follow-up study of infant evacuees at age 19 years. Psychological medicine. 2008;38(4):489-97. DOI:10.1017/S0033291707002462.
68. World Health Organization, Bennet B, Repacholi M, Carr Zh, editor. Health effects of the Chernobyl accident and special health care programmes. Report of the UN Chernobyl Forum Expert Group «Health» (EGH). Geneva: WHO; 2006. 160 p.
69. Heiervang KS, Mednick S, Sundet K, Rund BR. Effect of low dose ionizing radiation exposure in utero on cognitive function in adolescence. Scand J Psychol. 2010;51(3):210-5. DOI: https://doi.org/10.1111/j.1467-9450.2010.00814.x
70. Heiervang KS, Mednick S, Sundet K, Rund BR. The Chernobyl accident and cognitive functioning:a study of Norwegian adolescents exposed in utero. Dev Neuropsychol. 2010;35(6):643-55. DOI: https://doi.org/10.1080/87565641.2010.508550
71. Khokhriakov VV. [Reconstruction of radiation doses to the population of Ozersk due to emissions of iodine-131 into the atmosphere during reprocessing of irradiated nuclear fuel] [thesis of dissertation]. Ozersk; 1999. Russian.
72. Burtovaia YeYu, Kantona TE, Belova MV, Akleev AV. [Cognitive impairment in people exposed to radiation during prenatal development]. Zh Nevrol Psikhiatr Im SS Korsakova. 2015;115(4):20-3. doi: 10.17116/jnevro20151154120-23. Russian.
73. Almond D, Edlund L, Palme M. Chernobyl’s subclinical legacy: prenatal exposure to radioactive fallout and school outcomes in Sweden / Discussion Paper No.: 0607-19. — New York: Department of Economics, Columbia University; 2007. URL: http://www.columbia.edu/cu/economics/discpapr/DP0607-19.pdf.
74. Lie RT, Moster D, Strand P, Wilcox AJ. Prenatal exposure to Chernobyl fallout in Norway: neurological and developmental outcomes in a 25-year follow-up. Eur J Epidemiol. 2017;32(12):1065-73. doi: 10.1007/s10654-017-0350-z.
75. Huizink AC, Dick DM, Sihvola E, Pulkkinen L, Rose RJ, Kaprio J. Chernobyl exposure as stressor during pregnancy in adolescent offspring. Acta Psychiatr Scand. 2007. Vol. 116, ¹ 6. P. 438–446. doi: 10.1111/j.1600-0447.2007.01050.x.
76. Huizink AC., Bartels M, Rose RJ, Pulkkinen L, Eriksson CJ, Kaprio J. Chernobyl exposure as stressor during pregnancy and hormone levels in adolescent offspring. J Epidemiol Community Health. 2008;62(4):e5. DOI: 10.1136/jech.2007.060350.
77. Kaminskyi OV, Kopylova OV, Afanasyev DE, Pronin OV. Non cancer thyroid and other endocrine disease in children and adults exposed to ionizing radiation after the ChNPP accident. Probl Radiac Med Radiobiol. 2015;20:341-55.
78. Kaminskyi A, Loganovsky K, Talko V, Afanasyev D, Loganovska T, Lavrenchuk G, et al. Late hormone-mediated effects of cerebral irradiation from the radioactive iodine. EPA-2019, Eropean Psychiatric Association, 27th European Congress of Psychiatry, Psychiatry in Transition, Towards new models, goals & challenges, Warsaw, Poland, 6–9 April, 2019, EPA-19-2334. European Psychiatry. 2019, Vol. 56S. EPV0468. p. S592-S593.
79. Gorobets VF. [Tireopathy in children from the south-western region of the Kaluga region, irradiated after the accident at the Chernobyl nuclear power plant in utero and in the first weeks after birth]. Endocrinology problems. 2007;53(4):29-32. Russian.
80. Gorobets VF. [The incidence of thyropathies in the pre-pubertal period of children from the Kaluga region irradiated as a result of the incorporation of technogenic 131I at the neonatal and early thoracic stage of development]. Medical and biological problems of life. 2010;(3):11-7. Russian.
81. Gorobets VF. [Dependence of incidence rates of non-oncological diseases of the thyroid gland in the postnatal period in children from the Kaluga region from the period of gestation at which they underwent intrauterine irradiation as a result of incorporation of technogenic iodine-131]. Radiation and risk. 2011;20(1):24-33. Russian.
82. Igumnov SA, Lapanau PS. Overview of the mental health research among residents of contaminated territories and Chernobyl clean up workers/ «liquidators» in Belarus. Probl Radiac Med Radiobiol. 2015;20:55-74.
83. Fedirko PA, Babenko TF, Dorichevska RY, Garkava NA. Retinal vascular pathology risk development in the irradiated at different ages as a result of Chernobyl NPP accident. Probl Radiac Med Radiobiol. 2015. Vol. 20. P. 467–573.
84. Babenko TF, Fedirko PA, Dorichevska RY, Denysenko NV, Samoteikina LA, Tyshchenko OP. The risk of macular degeneration development in persons antenatally irradiated as a result of Chornobyl NPP accident. Probl Radiac Med Radiobiol. 2016;21:172-7.
85. Loganovsky K, Bazyka D, Loganovskaja T, Antipchuk Ye, Golyarnik N, Kreinis G, et al. Potential neurodevelopmental effects of exposure in utero. In: Abstracts of 10th Lowrad Conference “The Effects of Low and Very Low Doses of Ionizing Radiation on Human Health and Biotopes”; 2011 Dec 5-7; Kyiv, Ukraine. Kyiv; 2011. p. 62.
86. Loganovsky KM, Bazyka DA, Loganovska TR, Antipchuk KYu, Golyarnik NA, Ilyenko IM. Advancing of neuropsychiatric monitoring of persons exposed during prenatal period and at the age of 0-1 years due to radiation emergencies. Methodological recommendations. Kyiv: MOH, NAMS of Ukraine, Ukrainian Center for Scientific Medical Information and Patent Licensing, 2013. 24 p. Ukrainian.
87. Patent for Invention of Ukraine No. 106419. Loganovsky KM, Bazyka DA, Loganovska TR, Ilyenko IM, Golyarnik NA, Antipchuk KYu. Method for retrospective differential determination of human brain irradiation that occurred at the early stages of development. a2012 12453; 26/08.2014, Bul. No. 16. Ukrainian.
88. Kuts LA. [Morphological and functional signs of brain damage in animals whose mothers were exposed to iodine 131]. Biotika. 2016;4(11):21-4. Russian.
89. Sodboev TsTs, Rogozhina LV, Tikhinov IV, Elaev ZN. [The functional activity of the thyroid gland of rats irradiated in utero with iodine-131]. Veterinary Medicine. 2007;(1):1. Russian.
90. Patent of Ukraine for utility model No. 113045. Drozd IP, Lypska AI, SovaOA, Prokhorova YeM, Boiko OA, Talko VV. Method of determining of absorbed dose from incorporated 131I on fetal thyroid of laboratory rats. u201606778á 22.06.2016. Bul. # 1, 10/01/2017. Ukrainian.
91. Prasad KN. Radiation injury prevention and mitigation in humans. Boca Raton, FL: CRC Press, Taylor & Francis group; 2012. 196 p.
92. Nowakowski RS, Hayes NL. Radiation, retardation and the developing brain: time is the crucial variable. Acta Paediatrica. 2008;97(5):527-31.
93. Tang FR, Loke WK, Khoo BC. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. J Radiat Res. 2017;58(2):165-82. doi: 10.1093/jrr/rrw120.
94. Tang FR, Loke WK, Khoo BC. Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging. Brain Dev. 2017;39(4):277-93. doi: 10.1016/j.braindev.2016.11.001.
95. Peng S, Yang B, Duan MY, Liu ZW, Wang WF, Zhang XZ, et al. The disparity of impairment of neurogenesis and cognition after acute or fractionated radiation exposure in adolescent BALB/c mice. Dose Response. 2019;17:1.1559325818822574. doi: 10.1177/1559325818822574.