1. Bazyka OD, Belyi DO. Cardiovascular diseases and systolic function of left ventricle in cleanup workers of Chornobyl accident (based on 30 years follow-up). Probl Radiac Med Radiobiol. 2017;22:292-305.
2. Reste J, Zvagule T, Kurjane N, Skesters A, Silova A, Eglite M, et al. Investigations on health conditions of Chernobyl nuclear power plant accident recovery workers from Latvia in late period after dis aster. Proceedings of the Latvian Academy of sciences. Section B. 2016;70(5):257-65.
3. Vasylenko VV, Nechaev SYu, Tsigankov MYa, Ratia GG, Berkovskyy VB, Pikta VO, et al. Main internal doseforming factors for inhabitants of contaminated regions at current phase of the Chornobyl nuclear power plant accident (Kyiv region as an example). Probl Radiac Med Radiobiol. 2015;20:148-56.
4. Gunko NV. Efficacy evaluation of managed population shift in Ukraine from zone of obligate (compulsory) resettlement as a measure of public radiation protection. Probl Radiac. Med. Radiobiol. 2015;20:174-84.
5. Loganovsky KM, Kuts KV. Cognitive evoked potentials P300 after radiation exposure. Probl Radiac Med Radiobiol. 2016;21:264-90.
6. Sergienko NM, Fedirko PA. Accommodative function of eyes in persons exposed to ionizing radiation. Ophthal Res. 2002;34(4):192-4.
7. Fedirko PA, Babenko TF, Dorichevska RY, Garkava NA. Retinal vascular pathology risk development in the irradiated at different ages as a result of Chornobyl NPP accident. Probl Radiac Med Radiobiol. 2015;20:467-75.
8. Nurieva O, Diblik P, Kuthan P, Sklenka P, Meliska M, Bydzovsky J, et al. Progressive chronic retinal axonal loss following acute methanol-induced optic neuropathy: four-year prospective cohort study. Am J Ophthalmol. 2018;191:100-15.
9. Eldeeb M, Chan EW, Sun V, Chen JC. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with macular edema secondary to vein occlusion. Am J Ophthalmol. 2017;186:167-8.
10. Ahn SJ, Joung J, Lim HW, Lee BR. Optical coherence tomography protocols for screening of hydroxychloroquine in Asian patients. Am J Ophthalmol. 2017;184:11-8.
11. Mwanza J-C, Huang LY, Budenz DL, Shi W, Huang G, Lee RK. Differences in optical coherence tomography assessment of Bruch membrane openings compared to stereoscopic photography for estimating cup-to-disc ratio. Am J Ophthalmol. 2017;184:34-41.
12. Wang JC, Lains I, Providencia J, Armstrong GW, Santos AR, Gil P, et al. Diabetic choroidopathy: Choroidal vascular density and volume in diabetic retinopathy with swept-source optical coherence tomography. Am J Ophthalmol. 2017;184:75-83.
13. Ichikawa Y, Imamura Y, Ishida M. Inner nuclear layer thickness, a biomarker of metamorphopsia in epiretinal membrane, correlates with tangential retinal displacement. Am J Ophthalmol. 2018;193:20-7.
14. Kinoshita T, Imaizumi H, Miyamoto H, Katome T, Semba K, Mitamura Y. Two-years results of metamorphopsia, visual acuity, and optical coherence tomographic parameters after epiretinal membrane surgery. Graefes Arch Clin Exp Ophthalmol. 2016;254:1041-9.
15. Ichikawa Y, Imamura Y, Ishida M. Metamorphopsia and tangen tial retinal displacement after epiretinal membrane surgery. Retina. 2017;37:673-9.
16. Grubnik NP, Krasnovid TA, Vit VV. [A system of assessing the severity degree of the foveal structural changes according to the data of spectral optic coherent tomography and visual acuity in the eyeball contusion]. Ophthal J. 2015;(1):29-34. Russian.
17. Vit VV. The structure of the human visual system. Odessa: Astroprint. 2003. 655 p.
18. Mansour AM, Green WR, Hogge C. Histopathology of commotio retinae. Retina. 1992;12:24-8.
19. Seong J. A. Optical coherence tomography morphologic grading of macular commotio retinae and its association with anatomic and visual outcomes Am J Ophthalmol. 2013;156:994-1001.