1. National Aeronautics and Space Administration (NASA). Risk of acute and late Central Nervous System effects from radiation exposure. Human Research Program Space Radiation Program Element. Houston, Texas: Lyndon B. Johnson Space Center; April 6, 2016. 68 p.
2. Cucinotta FA, Wang H, Huff JL. Risk of acute and late Central Nervous System effects from radiation exposure. Chapter 6. In: McPhee JC, Charles JB, editors. Human health and performance risks of space exploration. Evidence reviewed by the NASA Human Research. NASA SP-2009-3405, Houston, Texas: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center; 2009. p. 191-213.
3. Cucinotta FA, Alp M, Sulzman FM, Wang H. Space radiation risks to the Central Nervous system. Life Sci Space Res (Amst). 2014;2:54-69.
4. Cacao E, Cucinotta FA. Modeling heavy-ion impairment of hippocampal neurogenesis after acute and fractionated irradiation. Radiat Res. 2016;186(6):624-37.
5. Alp M, Cucinotta FA. Biophysics model of heavy-ion degradation of neuron morphology in mouse hippocampal granular cell layer neurons. Radiat Res. 2018;189:312-25. doi: 10.1667/RR14023.
6. Marazziti D, Tomaiuolo F, Dell’Osso L, Demi V, Campana S, Piccaluga E, et al. Neuropsychological testing in interventional cardiology staff after long-term exposure to ionizing radiation. J Int Neuropsychol Soc. 2015;21(9):670-6.
7. Chumak V, Morgun A, Bakhanova E, Loganovsky K, Loganovska T, Marazziti D. Problems following hippocampal irradiation in interventional radiologists - doses and potential effects: a Monte Carlo simulation. Probl Radiac Med Radiobiol. 2015;20:241-56.
8. Andreassi MG, Piccaluga E, Guagliumi G, Del Greco M, Gaita F, Picano E. Occupational health risks in cardiac catheterization laboratory workers. Circ Cardiovasc Interv. 2016;9(4):e003273. doi: 10.1161/CIRCINTERVENTIONS.115.003273.
9. Borghini A, Vecoli C, Mercuri A, Carpeggiani C, Piccaluga E, Guagliumi G, Picano E, Andreassi MG. Low-dose exposure to ionizing radiation deregulates the brain-specific microRNA-134 in interventional cardiologists. Circulation. 2017;136(25):2516-8. doi: 10.1161/CIRCULATIONAHA.117.031251.
10. Gillies M, Richardson DB, Cardis E, Daniels RD, O’Hagan JA, Haylock R, et al. Mortality from circulatory diseases and other non- cancer outcomes among nuclear workers in France, the United Kingdom and the United States (INWORKS). Radiat Res. 2017;188(3):276-90. doi: 10.1667/RR14608.1.
11. Azizova TV, Batistatou E., Grigorieva ES, McNamee R, Wakeford R, Liu H, et al. An assessment of radiation-associated risks of mortality from circulatory disease in the cohorts of Mayak and Sellafield nuclear workers. Radiat Res. 2018;189(4):371-88. doi: 10.1667/RR14468.1.
12. Hatch M, Cardis E. Somatic health effects of Chernobyl: 30 years on. Eur J Epidemiol. 2017;32(12):1047-54. doi: 10.1007/s10654017-0303-6.
13. Bazyka D, Prysyazhnyuk A, Gudzenko N, Dyagil I, Belyi D, Chumak V, Buzunov V. Epidemiology of late health effects in Ukrainian Chornobyl cleanup workers. Health Phys. 2018;115(1):161-9. doi: 10.1097/HP.0000000000000868.
14. Loganovsky K. Do low doses of ionizing radiation affect the human brain? Data Science Journal. 2009;(8):BR13-BR35. Available from: https://www.jstage.jst.go.jp/article/dsj/8/0/8-BR-04/-article.
15. Marazziti D, Baroni S, Catena-Dell’Osso M, Schiavi E, Ceresoli D, Conversano C, et al. Cognitive, psychological and psychiatric effects of ionizing radiation exposure. Curr Med Chem. 2012;19(12):1864-9.
16. Marazziti D, Piccinni A, Mucci F, Baroni S, Loganovsky K, Loganovskaja T. Ionizing radiation: brain effects and related neuropsychiatric manifestations. Probl Radiac Med Radiobiol. 2016;21:64-90.
17. Bazyka DA, Loganovsky KN, Ilyenko IN, Chumak SA, Marazziti D, Maznichenko OL, Kubashko AV. Cellular immunity and telomere length correlate with cognitive dysfunction in clean-up workers of the Chernobyl accident. Clinical Neuropsychiatry. Journal of Treatment Evaluation. 2013;10(6):280-1.
18. Bazyka DA, Ilyenko IM, Loganovsky KN, Benotmane MA, Chumak SA. TERF1 and TERF2 downregulate telomere length in cognitive deficit at the late period after low-dose exposure. Probl Radiac Med Radiobiol. 2014;19:170-85.
19. Bazyka D, Buzunov V, Ilyenko I, Loganovsky K. Epidemiology and molecular studies in cerebrovascular disease at the late period after radiation exposure in Chernobyl. In: Mishra KP, editor. Biological responses, monitoring and protection from radiation exposure. New York: Nova Science Publishers Inc; 2015. p. 69-84. Available from: https://www.novapublishers.com/catalog/product-info.php?products-i d = 53310 %7b5 %7d10&osCsid.
20. World Health OrganizationHealth Effects of the Chernobyl Accident and Special Health Care Programmes. Report of the UN Chernobyl Forum Expert Group «Health» (EGH). Bennett B, Repacholi M, Carr Zh, editors. Geneva: World Health Organization; 2006. 160 p.
21. Loganovsky K, Havenaar JM, Tintle NL, Guey LT, Kotov R, Bromet EJ. The mental health of clean-up workers 18 years after the Chernobyl accident. Psychol Med. 2008;38(4):481-8.
22. Bromet EJ. Mental health consequences of the Chernobyl disaster. J Radiol Prot. 2012;32(1):N71-75. doi: 10.1088/0952-4746/32/1/N71.
23. Bromet EJ, Havenaar JM, Guey LT. A 25 year retrospective review of the psychological consequences of the Chernobyl accident. Clin Oncol (R Coll Radiol). 2011;23(4):297-305. doi: 10.1016/j.clon.2011.01.501.
24. Bolt MA, Helming LM, Tintle NL. The associations between selfreported exposure to the Chernobyl nuclear disaster zone and mental health disorders in Ukraine. Front Psychiatry. 2018;9:32. doi: 10.3389/fpsyt.2018.00032.
25. Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ. 2010;340:b5349. doi: 10.1136/bmj.b5349.
26. Ivanov VK, Maksioutov MA, Chekin SY, Petrov AV, Biryukov AP, Kruglova ZG, et al. The risk of radiation-induced cerebrovascular disease in Chornobyl emergency workers. Health Phys. 2006;90(3):199-207.
27. Buzunov VA, Krasnikova LI, Pirogova YeA, Tereschenko VM, Vojchulene YuS. [Epidemiological studies and assessment of the low doses of ionizing radiation effect on the development of non-tumorous diseases in the victims due to the Chernobyl accident]. Probl Radiac Med Radiobiol. 2007;13:56-66. Russian.
28. Krasnikova LI, Buzunov VA. [Risks for non-tumorous pathology in the participants of liquidation of the consequences of the Chernobyl accident according to the data of in-depth clinical and epidemiological monitoring]. Probl Radiac Med Radiobiol. 2007;13:199-207. Russian.
29. Ivanov VK. Late cancer and noncancer risks among Chornobyl emergency workers of Russia. Health Phys. 2007;93(5):470-9.
30. Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, et al. Studies of the mortality of atomic bomb survivors, Report 14, 1950- 2003: an overview of cancer and noncancer diseases. Radiat Res. 2012;177(3):229-43.
31. Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, et al. A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat Res. 2008;169(1):99-109.
32. Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, et al. Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms. Radiat Environ Biophys. 2010;49(2):139-53. doi: 10.1007/s00411-009-0250-z.
33. McGeoghegan D, Binks K, Gillies M, Jones S, Whaley S. The non- cancer mortality experience of male workers at British Nuclear Fuels The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946-2005. Int J Epidemiol. 2008;37(3):506-18. doi: 10.1088/0952-4746/34/3/595.
34. Vrijheid M, Cardis E, Ashmore P, Auvinen A, Bae JM, Engels H, et al. Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-Country Study of nuclear industry workers. Int J Epidemiol. 2007;36(5):1126-35.
35. Little MP, Azizova TV, Bazyka D, Bouffler SD, Cardis E, Chekin S, et al. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ Health Perspect. 2012;120(11):150-311. doi: 10.1289/ehp.1204982.
36. Buzunov VO, Loganovsky KN, Krasnikova LI, Bomko MO, Belyaev YM, Yaroshenko ZS, Domashevska TY. Social and psychological state of the Chornobyl clean up workers. Risk factors for negative changes. Probl Radiac Med Radiobiol. 2016;21:106-18.
37. Loganovsky KM, Chumak SA, Bomko MO, Antypchuk KYu, Loganovska TK, Kolosynska OO, et al. [Cerebrovascular diseases and other brain lesions in the victims due to the Chornobyl disaster]. Journal of the National Academy of Medical Sciences of Ukraine. 2016;22(2):163-78. Ukrainian.
38. Buzunov VO, Loganovsky KM, Krasnikova LI, Bomko MO, Belyayev YM, Yaroshenko ZS, Domashevska TE. Psychosocial state of the adult evacuees and risk factors of negative change. Probl Radiac Med Radiobiol. 2017;22:79-96.
39. Tang FR, Loganovsky K. Low dose or low dose rate ionizing radiation-induced health effect in the human. Journal of Environmental Radioactivity. 2018;192:32-47.
40. Nyagu AI, Loganovsky KN. [Neuropsychiatric effects of ionizing radiation]. Kyiv: Chernobylinterinform, 1998. 350 p. Russian.
41. Loganovsky KN. [Mental disorders at exposure to ionising radiation as a result of the Chernobyl accident: neurophysiological mechanisms, unified clinical diagnostics, treatment] [dissertation for the academic degree of a Doctor of Medical Sciences in Radiobiology (03.00.01) and Psychiatry (14.01.16)]. Kyiv: Scientific Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine; 2002. 462 p.Ukrainian
42. Loganovsky KN, Yuryev KL. EEG patterns in persons exposed to ionizing radiation as a result of the Chernobyl accident: Part 1: Conventional EEG analysis. J Neuropsychiatry Clin Neurosci. 2001;13(4):441-58.
43. Denysyuk NV. [Clinical and neurophysiological characteristics of chronic cerebrovascular pathology in the Chornobyl clean-up workers in the remote period following radiation exposure] [synopsis of dissertation]. Kyiv: Ukrainian Scientific Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine; 2006. 24 p. Ukrainian.
44. Loganovsky KN, Zdanevich NA. Cerebral basis of post-traumatic stress disorder following the Chernobyl disaster. CNS Spectrums. 2013;18(2):95-102. doi: 10.1017/S109285291200096X.
45. Antypchuk KYu. [Clinical and neuropsychological characteristics of chronic organic mental disorders in the remote period following radiation exposure due to the Chornobyl accident] [synopsis of dissertation]. Kyiv: Ukrainian Scientific Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine, 2005. 23 p. Ukrainian.
46. Bomko MO. [Structural and functional characteristics of organic mental disorders in the Chornobyl clean-up workers in the remote period following radiation exposure] [synopsis of dissertation]. Kyiv: Ukrainian Scientific Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine, 2005. 22 p. Ukrainian.
47. Loganovsky KN, Yuryev KL. EEG patterns in persons exposed to ionizing radiation as a result of the Chernobyl accident. Part 2: quantitative EEG analysis in patients who had acute radiation sickness. J Neuropsychiatry Clin Neurosci. 2004;16(1):70-82.
48. Loganovsky K, Bomko M, Chumak S, Loganovska T, Antypchuk K, Perchuk I, et al. Mental health and neuropsychiatric effects. In: Bazyka D., Sushko V., Chumak A., Chumak V., Yanovych L. Health effects of Chornobyl accident – thirty years aftermath. Kyiv: DIA; 2016. p. 320-381. Available from: http://nrcrm.gov.ua/downloads/2017/monograph-last.pdf.
49. Loganovsky K, Zdorenko L. Intelligence deterioration following Acute Radiation Sickness. Clinical Neuropsychiatry. Journal of Treatment Evaluation. 2012;9(5):187-94.
50. Loganovsky KN, Kuts KV. Determination of the premorbid intelligence using the Wechsler Adult Intelligence Scale as an effective way to verify and assess neurocognitive deficit in the Chernobyl clean-up workers. Ukrainian neurological journal. 2018;1:56-65.
51. Zhavoronkova LA, Belostotskii AP, Kulikov MA, Oknina LB, Kholodova NB, Kuptsova SV. Specificity of auditory evoked potentials changes in participants of Chernobyl accident consequences: I. Analysis of early N1 component. Fiziol Cheloveka. 2010;36(2):32-43 [Human Physiology, Translated from Fiziologiya Cheloveka].
52. Zhavoronkova LA, Belostotskii AP, Kulikov MA, Kuptsova SV, Kholodova HB, Oknina LB. Features of cognitive audiory evoked potentials changes at participants of liquidation of chernobyl accident consequences the message II. The analysis of late component P300. Fiziol Cheloveka. 2010;36(4):22-33 [Human Physiology, Translated from Fiziologiya Cheloveka].
53. Loganovsky KM, Kuts KV. Cognitive evoked potentials P300 after radiation exposure. Probl Radiac Med Radiobiol. 2016;21:264-90.
54. Loganovsky K, Kuts K. Evoked bioelectrical brain activity following exposure to ionizing radiation. Probl Radiac Med Radiobiol. 2017;22:38-68.
55. Loganovsky K, Loganovskaja T, Kuts K. Psychophysiology research in the detection of ionizing radiation effects In: Chiappelli F, editor. Advances in Psychobiology. NOVA Science Publishers, Inc. USA; 2018. p. 63-152.
56. Tsang RS, Mather KA, Sachdev PS, Reppermund S. Systematic review and meta-analysis of genetic studies of late-life depression. Neurosci Biobehav Rev. 2017;75:129-39. doi: 10.1016/j.neubiorev.2017.01.028.
57. Panenka WJ, Gardner AJ, Dretsch MN, Crynen GC, Crawford FC, Iverson GL. Systematic review of genetic risk factors for sustaining a mild traumatic brain injury. J Neurotrauma. 2017;34(13):2093-9. doi: 10.1089/neu.2016.4833.
58. Sinopoli VM, Burton CL, Kronenberg S, Arnold PD. A review of the role of serotonin system genes in obsessive-compulsive disorder. Neurosci Biobehav Rev. 2017;80:372-81. doi: 10.1016/j.neubiorev.2017.05.029.
59. Kato M, Fukuda T, Wakeno M, Okugawa G, Takekita Y, Serretti A, Azuma J, Kinoshita T. 5-HT1A gene polymorphisms contributed to antidepressant response in major depression. Nihon Shinkei Seishin Yakurigaku Zasshi. 2009;29(1):23-31. Japanese.
60. Stacey D, Ciobanu LG, Baune BT. A systematic review on the association between inflammatory genes and cognitive decline in non-demented elderly individuals. Eur Neuropsychopharmacol. 2017;27(6):568-88. doi: 10.1016/j.euroneuro.2015.12.017.
61. Ettinger U, Merten N, Kambeitz J. Meta-analysis of the association of the SLC6A3 3’-UTR VNTR with cognition. Neurosci Biobehav Rev. 2016;60:72-81. doi: 10.1016/j.neubiorev.2015.09.021.
62. Zhu J, Klein-Fedyshin M, Stevenson JM. Serotonin transporter gene polymorphisms and selective serotonin reuptake inhibitor tolerability: review of pharmacogenetic evidence. Pharmacotherapy. 2017;37(9):1089-104. doi: 10.1002/phar.1978.
63. Kim YK, Ham BJ, Han KM. Interactive effects of genetic polymorphisms and childhood adversity on brain morphologic changes in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2018;pii: S0278-5846(18)30049-6. doi: 10.1016/j.pnpbp.2018. 03.009.
64. Basu A, Chadda RK, Sood M, Kaur H, Kukreti R. Association of serotonin transporter (SLC6A4) and receptor (5HTR1A, 5HTR2A) polymorphisms with response to treatment with escitalopram in patients with major depressive disorder: A preliminary study. Indian J Med Res. 2015;142(1):40-5. doi: 10.4103/0971-5916.162094.
65. Nonen S, Kato M, Takekita Y, Wakeno M, Sakai S, Serretti A, Kinoshita T. Polymorphism of rs3813034 in Serotonin Transporter Gene SLC6A4 Is Associated With the Selective Serotonin and Serotonin-Norepinephrine Reuptake Inhibitor Response in Depressive Disorder: Sequencing Analysis of SLC6A4. J Clin Psychopharmacol. 2016;36(1):27-31. doi: 10.1097/JCP.0000000000000454.
66. Manoharan A, Shewade DG, Rajkumar RP, Adithan S. Serotonin transporter gene (SLC6A4) polymorphisms are associated with response to fluoxetine in south Indian major depressive disorder patients. Eur J Clin Pharmacol. 2016;72(10):1215-20. doi: 10.1007/s00228-016-2099-9.
67. Ivanets NN, Kinkulina MA, Tihonova YuG, Izumina TA, Avdeyeva TI, Morozov DI. [Genetic and clinical predictiors for the effective treatment of depressive disorders]. [Zh Nevrol Psikhiatr Im S S Korsakova]. 2017;117(10):55-64. Russian.
68. Duman EA, Canli T. Influence of life stress, 5-HTTLPR genotype, and SLC6A4 methylation on gene expression and stress response in healthy Caucasian males. Biol Mood Anxiety Disord. 2015;5:2. doi: 10.1186/s13587-015-0017-x.
69. Kruijt AW., Putman P, Van der Does W. The 5-HTTLPR polymorphism, early and recent life stress, and cognitive endophenotypes of depression. Cogn Emot. 2014;28(7):1149-63. doi: 10.1080/02699931.2013.873018.
70. Zhu J, Klein-Fedyshin M, Stevenson JM. Serotonin Transporter Gene Polymorphisms and Selective Serotonin Reuptake Inhibitor Tolerability: Review of Pharmacogenetic Evidence. Pharmacotherapy. 2017;37(9):1089-104. doi: 10.1002/phar.1978.
71. Oo KZ, Aung YK, Jenkins MA, Win AK. Associations of 5HTTLPR polymorphism with major depressive disorder and alcohol dependence: A systematic review and meta-analysis. Aust N Z J Psychiatry. 2016;50(9):842-57. doi: 10.1177/0004867416637920.
72. Gatt JM, Burton KL, Williams LM, Schofield PR. Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. J Psychiatr Res. 2015;60:1-13. doi: 10.1016/j.jpsychires.2014.09.014.
73. Abramenko IV, Bilous NI, Chumak SA, Loganovsky KM. Influence of polymorphic variants of the SLC6A4 gene on the frequency of detection of depressive states in the group of the clean up workers of consequences of Chornobyl accident in the remote period after the Chornobyl catastrophe. Probl Radiac Med Radiobiol. 2017;22:282-91.
74. International Statistical Classification of Diseases and Related Health Problems, 10th Revision. Vol. 2, Instruction Manual. Geneva: World Health Organization; 2010. 201 p.
75. Patwardhan MB, Matchar DB, Samsa GP, McCrory DC, Williams RG, Li TT. Cost of multiple sclerosis by level of disability: a review of literature. Mult Scler. 2005;11(2):232-9.
76. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-52. doi: 10.1212/WNL.33.11.1444.
77. Overall J, Gorham D. The Brief Psychiatric Rating Scale (BPRS): recent developments in ascertainment and scaling. Psychopharmacology Bulletin. 1988;24:97-9.
78. Leucht S, Kane JM, Kissling W, Hamann J, Etschel E, Engel R. Clinical implications of Brief Psychiatric Rating Scale scores. Br J Psychiatry. 2005;187:366-71.
79. Goldberg D. The General Health Questionnaire: GHQ-28. London: NFER-Nelson; 1981. 89 p.
80. Shafer AB. Meta-analysis of the factor structures of four depression questionnaires: Beck, CES-D, Hamilton, and Zung. J Clin Psychol. 2006;62(1):123-46.
81. Horowitz MJ, Wilner N, Alvarez W. Impact of events scale. A measure of objective stress. Psychosom Med. 1979;41(3): 209–18.
82. Snaith RP, Constantopoulos AA, Jardine MY, McGuffin P. A clinical scale for the self-assessment of irritability. Br J Psychiatry. 1978;132:164-71.
83. Folstein M, Folstein S, McHugh P. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-98.
84. Schmidt M. Rey Auditory Verbal Learning Test: A Handbook (RAVLT). Lutz, Florida: Psychological Assessment Resources, Inc.; 1997. 125 p.
85. Filimonenko YuI, Timofeev VI. [WAIS: The diagnostics of the intelligence development level (adult version): methodological guidance]. Saint-Petersburg: IMATON; 2012:112 p. Russian.
86. Schmieschek H. Questionnaire for the determination of accentuated personalities. Psychiatr Neurol Med Psychol (Leipz). 1970;22(10):378-81.
87. Eysenck H, Eysenck JSBG. Manual of the Eysenck Personality Questionnaire. London: Hodder and Stoughton; 1975. 47 p.
88. Lemyre L, Tessier R, Fillion L. Psychological Stress Measurement (PSM): A translation. Quebec, PQ: Universite Laval; 1991.
89. Vodopianova NYe. [Psychodiagnostics of stress]. Saint-Petersburg: Piter; 2012. 112 p. Russian.
90. Malkina-Pyh IG. [Psychosomatics: a guideline for practical psychologists]. Moscow: EKSMO; 2005. 992 p. Russian.
91. Folkman S, Lazarus RS. Transactional theory and research on emotion and coping. Eur J Pers. 1987;1:141-69.
92. Spielberger CD, Gorssuch RL, Lushene PR, Vagg PR, Jacobs GA. Manual for the State-Trait Anxiety Inventory. Consulting Psychologists Press; 1983.
93. Dermanova IB, editor. [The examination of anxiety (Spielberg CD., adapted by Hanin YuL.). Diagnostics of emotional and moral development]. Saint-Petersburg: Rech; 2002. p. 124-126. Russian.
94. Zenkov LR, Ronkin MA. [Functional diagnostics of nervous diseases: a guideline for physicians]. 5th ed. Moscow: MEDpress inform; 2013. 488 p. Russian.
95. Zhirmunskaya YeA. [Clinical electroencephalography. The review of literature and prospects for further method using]. Moscow: MAYBE; 1991. 77 p. Russian.
96. Schomer DL, Lopes da Silva FH. Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields. Philadelphia, PA: Lippincott Williams & Wilkins Edition; 2011. 1275 p.
97. Luck SJ, Kappenman ES, editors. The Oxford handbook of event-related potential components. Oxford University Press: Academic; 2012. 664 p.
98. Gnezdickij VV. [Evoked brain potentials in clinical practice]. Moscow: MEDpress inform; 2003. 264 p. Russian.
99. Gnezdickij VV., Korepina OS. [Atlas on evoked brain potentials (a practical guideline based on specific clinical cases survey)]. Ivanovo: PresSto; 2011. 532 p. Russian.
100. Wendland JR, Martin BJ, Kruse MR, Lesch KP, Murphy DL. Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531. Mol Psychiatry. 2006;11(3):224-6.
101. Halafian AA. [STATISTICA 6. Statistical data analysis]. 2nd ed. Moscow: Binom-Press; 2010. 528 p. Russian.
102. Buyul A, Tsefel P. [SPSS: Art of information processing. Analysis of stastistical data and restoration of hidden patterns]. Moscow, Saint-Petersburg, Kiev: DiaSoft; 2005. 603 p. Russian.
103. Preston DL, Lubin JH, Pierce DA, McConney ME. EPICURE User’s Guide. Seattle, Washington: Hirosoft Corporation; 1993.
104. Masiuk SV, Kukush AG, Shklyar SV, Chepurny MI, Likhtarov IA. Radiation risk estimation: based on measurement error models. De Gruyter Series in Mathematics and Life Sciences, Volume 5. Walter de Gruyter GmbH, Berlin/Boston; 2017, 238 p. ISBN 9783-11-044180-2.
105. Masiuk SV, Kukush OG, Shklyar SV, Chepurnyj MI, Lihtariov IA. [Regression models with measurement biases and their application to radiation risks estimation]. Lihtariov IA, editor. Kyiv: DIA, 2015. 288 p. Ukrainian.