1. Fesenko SV, Voigt G, Spiridonov SI, Sanzharova NI, Gontarenko IA, Belli M, Sansone U. Analysis of the contribution of forest pathways to the radiation exposure of different population groups in the Bryansk region of Russia. Radiat Environ Biophys. 2000;39:291-300.
2. Bulko NI, Shabaleva MA, Kozlov AK, Tolkacheva NV, Mashkov IA. The 137Cs accumulation by forest-derived products in the Gomel region. J Environ Radioact. 2014;127:150-4. doi: 10.1016/j.jen-vrad.2013.02.003.
3. Kachur DP, Zamostian PV, Pankovskaya GP, Raichuk LA, Kuchma MD, Sviatetska AV. [Socio-ecological factors of consumer behavior of the population in radioactively contaminated territories of Polissya]. Agroecological Journal. 2010;(Special edition):106-10. Ukrainian.
4. Repin VS, Bondarenko OA, Novak NYu, Tsygankov NI, Aryasov BB. Possibility of monitoring internal irradiation doses in the heavily contaminated Zone at the late stage of Chernobyl accident. Radiat Prot Dosimetry. 1998;79(1-4):183-6.
5. Likhtarev I, Kovgan L, Gluvchinskiy R, Perevoznikov O, Morrey M, Prossen L, et al. Assessing internal exposures and the efficacy of countermeasures from whole body measurements. In: The radiological consequences of the Chernobyl accident First international conference; 1996 March 18-22; Minsk, Belarus. Luxembourg: European Commission, 1996. p. 295-308.
6. Boschenko VV, Verbelchuk SP, Verbelchuk TV. [Features of 90Sr and 137Cs contamination of different parts of the trophic chain in conditions of natural ecosystems of the Polissya of Ukraine in the post-Chornobyl period]. Visnyk DAAU. 2001;(1):39-42. Ukrainian.
7. Hayashida N, Sekitani Y, Kozlovsky A, Rafalsky R, Gutevich A, Daniliuk V, et. al. Screening for 137Cs body burden due to the Chernobyl accident in Korosten city, Zhitomir, Ukraine: 1996-2008. J Radiat Res. 2011;52(5):629-33. doi: 10.1269/jrr.11017.
8. Bruk GJ, Shutov VN, Travnikova IG, Balonov MI, Kaduka MV, Basalaeva LN. The Role of the Forest Products in the Formation of Internal Exposure Doses to the Population of Russia after the Chernobyl Accident. In: Linkov I, Schell WR, editors. Contaminated Forests. NATO Science Series (Series 2: Environmental Security), vol 58. Springer, Dordrecht; 1999. doi.org/10.1007/978-94-011-4694-4-36.
9. [Methodical recommendations for conducting measurements using whole body counters for dosimetric certification of settlements]. Kiev: Minchernobyl Ukrainy, NTsRM AMN Ukrainy; 1995. 39 p. Russian.
10. [Methodical manual on the organization of scientific research conducting in the field of agricultural radiology in the system of the Ministry of Agrarian Policy and Food of Ukraine]. Kyiv; 1992. 127 p. Ukrainian.
11. [Instructions for the collection and preparation of samples for the radiometric control of forestry products]. Kyiv; 1998. 78 p. Ukrainian.
12. Yunatov AA. [The establishment of ecological profiles and trial plots]. In: Lavrenko EM, Korchahyna AA, editors. [Field geobotanics]. Vol. III. M.-L.: Science, Leningrad Branch; 1964. p. 9-35. Russian.
13. Raichuk LA. [The role of forest ecosystems in forming of doses of Ukrainian Polissya population exposure doses] [dissertation]. Kyiv: Institute of Agroecology and Environmental Management of National Academy of Agrarian Sciences of Ukraine, 2012. 172 p. Ukrainian.
14. Tsubokura M, Nomura S, Sakaihara K, Kato S, Leppold C, Furutani T, et.al. Estimated association between dwelling soil contamination and internal radiation contamination levels after the 2011 Fukushima Daiichi nuclear accident in Japan. BMJ Open. 2016;6:e010970. doi:10.1136/bmjopen-2015-010970.
15. Kimura Y, Okubo Y, Hayashida N, Takahashi J, Gutevich A, Chorniy S, et.al. Evaluation of the relationship between current internal 137Cs exposure in residents and soil contamination west of Chernobyl in Northern Ukraine. PLoS One. 2015;10(9):e0139007. doi: 10.1371/journal.pone.0139007.
16. Bernhardsson C, Zvonova I, Raaf C, Mattsson S. Measurements of long-term external and internal radiation exposure of inhabitants of some villages of the Bryansk region of Russia after the Chernobyl accident. Sci. of the Total Environ. 2011;409(22):4811-17. doi: 10.1016/j.scitotenv.2011.07.066.
17. Jelin BA, Sun W, Kravets A, Naboka M, Stepanova EI, Vdovenko VY, et.al. Quantifying annual internal effective 137Cesium dose utilizing direct body-burden measurement and ecological dose modeling. J. Exp. Sci. Environ. Epidemiol. 2016;26(6):546-53. doi: 10.1038/jes.2015.6.
18. Raichuk LA. [The elements of the technique for evaluating the population internal irradiation doses ormation to the remote stage of consequences of the Chernobyl NPP accident overcoming]. Scientific Bulletin of UNFU. 2014;24.07:150-6. Ukrainian.
19. Chobotko HM, Landin VP, Raichuk LA, Shvydenko IK, Umanskyi MS. [Assessment of formation of the dose of internal irradiation of population at the remote stage of overcoming of aftereffects of Chernobyl disaster]. News of Agrarian Sciences. 2015;7:54-8. Ukrainian.
20. Chobotko HM, Piskovyi YuM, Peretiatko YeIe, Raichuk LA. [Influence of ecosystems on the dose load of the population living in the third and fourth zones of radioecological control of the Ukrainian Polissya]. In: [Biogeochemical aspects of human health preservation]: Proceedings of the International Scientific and Practical Conference; 2010 Apr 8-9; Uzhhorod, Ukraine. Uzhhorod; 2010. p. 107-10. Ukrainian.
21. Tsukada H, Shibata H, Sugiyama H. Transfer of radiocaesium and stable caesium from substrata to mushrooms in a pine forest in Rokkasho-mura, Aomori, Japan. J Environ Radioact. 1998;39(2):149-60.
22. Lykhtarev YA, Kovhan LN, Novak DV, et. al. [The model of formation of an effective equivalent dose of external exposure after the Chernobyl accident]. In: Topical issues of retrospective, current and forecast dosimetry of irradiation as a result of the Chernobyl accident: Proceedings of the Scientific Conference; 1992 Oct. 27-29; Kiev, Ukraine. Kiev; 1993. p. 40-70. Russian.
23. Berg MT, Shumann LJ. A three-dimensional stochastic model of the behavior of radionuclides in forest I. Model structure. Ecological Modelling. 1995;83(3): 359-72.
24. Modelling the migration and accumulation of radionuclides in forest ecosystems. Final report on the BIOMASS Forest Working Group activities 1998-2000. ISSN 1011-4289. Vienna: International Atomic Energy Agency; 2000. 125 p.
25. Seymour EM, Mitchell PI, Vintro LL, Little DJ. A Model for the transfer and recycling of Cs-137 within a deciduous forest ecosystem. In: Linkov I, Schell WR, editors. Contaminated Forests. NATO Science Series (Series 2: Environmental Security), vol 58. Springer, Dordrecht; 1999. https://doi.org/10.1007/978-94-011-4694-4_22.
26. Shaw G, Avila R, Venter A, at al. Radionuclide migration in forest ecosystems e results of a model validation study. J Environ Radioactiv. 2005;84:285-96.
27. Schell WR, Linkov I, Mytternaere C, Morel B. A dynamic model for evaluating radionuclide distribution in forest from nuclear accidents. Health Phys. 1996;70(3):318-35.
28. Riesen TK, Avila R, Moberg L, Hubbard L. Review of forest models developed after the Chernobyl NPP accident. In: Linkov I, Schell WR, editors. Contaminated Forests. NATO Science Series (Series 2: Environmental Security), vol 58. p. 151-60. Springer, Dordrecht; 1999. https://doi.org/10.1007/978-94-011-4694-4_17.
29. Goor F., Avila R. Quantitative comparison of models of 137Cs cycling in forest ecosystems. Environ. Modell. & Software. 2003;18:273-79.
30. Iaskovets II, Tarasenko RO. [Methodical manual on discipline «Modeling and forecasting of the environment» using the mathematical package MAPLE]. Kyiv: National Agrarian University; 2004. 79 p. Ukrainian.
31. Chobotko HM, Raichuk LA, Landin VP, Piskovyi YuM. [Forming of internal irradiation dose of population of Ukrainian Polis’ya for account of foodstuffs of forest origin]. Agroecological journal. 2011;(1):37-42. Ukrainian.